Research Paper

Preparation of Trititanate Nanotube and TEM Observation

  • HUANG Cong ,
  • ZHANG Kai-Jian ,
  • DANG Zhi ,
  • Li Xin-Jun
Expand
  • 1. College of Environmental Science and Engineering, South China University
    of Technology, Guangzhou 510640, China;
    2. Economy, Industry and Business Management College, Chongqing University, Chongqing 400044, China;
    3. Panzhihua Iron & Steel Research Institute, Panzhihua I & S Ltd. Co, Panzhihua 617000, China;
    4. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2005-05-23

  Revised date: 2005-07-11

  Online published: 2006-05-20

Abstract

Trititanate nanotubes were synthesized from rutile TiO2 via hydrothermal process. The influences of process parameters such as stirring, acid leaching and calcination temperature on formation and structure of nanotubes were observed by TEM. The results show that continuous stirring could improve the directional growth of TiO2 particles and formation of trititanate nanoflakes, and nanotubes are formed in the acid leaching process. It also reveals that 300℃ is the critical transformation temperature between nanotubes and long-stick crystalline column. The nanotubes synthesized under optimal condition are uniform and longer than 1μm, and the ratio of length to diameter is 125:1.

Cite this article

HUANG Cong , ZHANG Kai-Jian , DANG Zhi , Li Xin-Jun . Preparation of Trititanate Nanotube and TEM Observation[J]. Journal of Inorganic Materials, 2006 , 21(3) : 547 -552 . DOI: 10.3724/SP.J.1077.2006.00547

References

1 Iijima S. Nature, 1991, 354 (6348): 56-58.
2 Tenne R, Margulis L, Genut M, et al. Nature, 1992, 360(6403): 444-446.
3 Hoyer P. Langmuir, 1996, 12: 1411-1413.
4 Kasuga T, Hiramatsu M, Hoson A, et al. Langmuir, 1998, 14: 3160-3163.
5 Du G H, Chen Q, Che R C, et al. Applied Physics Letters, 2001, 79(22): 3702-3704.
6 Chen Q, Du G H, Peng L M. Journal of Chinese Electron Microscopy Society, 2002, 21(6): 265-269.
7 Zhang J W, Guo X Y, Jin Z S, et al. Chinese Chemical Letters, 2003, 14(4): 419.
8 Bavykin D V, Parmon V N, Lapkin A A, et al. Journal of Materials Chemistry, 2004, 14: 3370-3377.
9 李晓红, 张校刚, 力虎林. 高等学校化学学报, 2001, 22(1): 130--132.
10 Akita T, Okumura M, Tanaka K, et al. Surface and Interface Analysis, 2005, 37: 265-269.
11 王保玉,郭新勇, 张治军. 等. 高等学校化学学报, 2003, 24(10): 1838-1841.
12 Yang J J, Jin Z S, Wang X D, et al. Dalton Transactions, 2003, (20): 3898-3901.
13 Suzuki Y, Yoshikawa S. Journal of Materials Research, 2004, 19(4): 982-985.
14 Nakahira A, Kato W, Tamai M, et al. Journal of Materials Science, 2004, 39: 4239-4245.
15 张青红, 高濂, 郑珊, 等.化学学报, 2002, 60(8): 1439-1444.
16 Chen Q, Zhou W Z, Du G H, et al. Advanced Materials, 2002, 14 (17): 1208-1211.
17 Zhang J W, Guo X Y, Jin Z S, et al. Chinese Chemical Letters, 2003, 14 (4): 419.
18 Ma R Z, Bando Y, Sasaki T. Chemical Physics Letters, 2003, 380: 577.
19 Tsai C C, Teng H. Chemical materials, 2004, 16: 4352-4358.
20 Zhang S, Peng L M, Chen Q, et al. Physical Review Letters, 2003, 91(25): 2561031-2561034.
21 Zhang M, Jin Z S, Zhang J W, et al. Journal of Molecular catalysis A: Chemical, 2004, 217: 203-210.
Outlines

/