Research Paper

Preparation of Transparent Ferroelectric Pb0.92La0.08TiO3 Thick Films

  • ZHENG Fen-Gang ,
  • CHEN Jian-Ping ,
  • LI Xin-Wan
Expand
  • 1. The State Key Laboratory on Fiber-Optic Local Area Network and Advanced
    Optical Communication Systems, Shanghai Jiaotong University, Shanghai 200030, China;
    2.Department of Physics, Suzhou University, Suzhou 215006, China

Received date: 2005-03-22

  Revised date: 2005-06-14

  Online published: 2006-03-20

Abstract

Pb0.92La0.08TiO3 films with thicknesses between 580 and 1830nm were deposited on ITO-coated glass substrates by using a sol-gel process under a relative low temperature of 580℃. The results obtained show that the films are crystallized well with pure perovskite polycrystalline structure. The surfaces of the films are smooth and condense. With the increase of the film thicknesses, the grain sizes and dielectric constants of the films increase. The dielectric constant-electric field curves are symmetric about zero bias axis, and show the hysteresis for all the films. In addition the coercive fields E c decreases with the film thicknesses increasing. All the films are transparent and the absorption edges shift to longer wavelength with increasing thicknesses of the films. The refractive index (n) and extinction coefficient (k) of 1830nm thick film are 2.39 and 0.009, respectively, at 633nm wavelength.

Cite this article

ZHENG Fen-Gang , CHEN Jian-Ping , LI Xin-Wan . Preparation of Transparent Ferroelectric Pb0.92La0.08TiO3 Thick Films
[J]. Journal of Inorganic Materials, 2006
, 21(2) : 459 -465 . DOI: 10.3724/SP.J.1077.2006.00459

References

1 Scott J F Ferroelectrics Reviews, 1998, 1: 1-5.
2 Polla D L, Frances L F. Annu. Rev. Mater. Sci., 1998, 28: 563-568.
3 Ding A L, Luo W G, Qiu P S, et al. J. Mater. Res., 1998, 13: 1266-1270.
4 Katsuhiko H, Chikara A. IEEE Photonics Tech. Lett., 2002, 14: 956-958.
5 Kawaguchi T, Adachi H, Setsune K, et al. Appl. Opt., 1984, 23: 2187-2191.
6 Higasgino H, Kawaguchi T, Adachi H, et al. J. Appl. Phys., 1985, 24: 284-286.
7 Jin G H, Zou Y K, Fuflyigin V. J. Lightwave Technol., 2000, 18: 807-812.
8 Tang P S, Towner D J, Meier A L, et al. IEEE Photonics Tech. Lett., 2004, 16: 1837-1839.
9 Roshan T, Yasunori O, Shigetoshi N. J. Lightwave Technol., 2003, 21: 1820-1826.
10 Kim Y, Erbil A, Boatner L A. Appl. Phys. Lett., 1996, 69: 2187-2189.
11 郑分刚, 朱卫东, 沈明荣, 等. 功能材料, 2001, 32: 124-126.
12 Bhaskar S, Majumder S B, Jain M, et al. Mater. Sci. and Engineering B, 2001 87: 178-190.
13 Song Z T, Chan H L W, Choy C L, et al. Microelectronic Engineering, 2003, 66: 887-890.
14 Udayakumar K R, Schuele P J, Chen J, et al. J. Appl. Phys., 1995, 77: 3981-3986.
15 Chen B, Yang H, Zhao L, et al. Appl. Phys Lett., 2004, 84: 583-585.
16 Bhaskar S, Majumder S B, Dobal P S, et al. J. Appl. Phys., 2001, 89: 5637-5643.
17 Zhou Q F, Chan H L W, Choy C L. Appl. Phys. A, 2000, 70: 293-297.
18 Gu H, Bao D, Wang S, et al. Thin Solid Films, 1996, 283: 81-83.
19 Thacher P D. Applied Optics, 1977, 16: 3210-3214.
20 Chopra S, Sharma S, Goel T C, et al. Appl. Surface Sci., 2004, 236: 321-325.
Outlines

/