Research Paper

Cuttlebone and Its Hydrothermal Converting to Hydroxyapatite

  • LIU Jin-Hua ,
  • WANG Da-Zhi
Expand
  • Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 China

Received date: 2005-01-26

  Revised date: 2005-04-11

  Online published: 2006-03-20

Abstract

The composition and morphology
of original cuttlebone and hydroxyapatite(HAP)-converted cuttlebone were
characterized by means of X-ray diffraction (XRD), Fourier transmission
infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis(TG-DTA) and scanning electron microscopy (SEM). The mechanism of self-assembly was also discussed. The results show that the mineral of original cuttlebone is rod-like aragonite polymorph of CaCO3 and the chamber-like macroporous architecture is its extrinsic feature. In phosphate solution, the interior aragonite
converts hydrothermally to HAP by a solid-state topotactic ion-exchange reaction in which the HAP retains the morphology and the orientation of the original aragonite. Meanwhile, the exterior aragonite converts hydrothermally to HAP via dissolution-recrystallization, with squama-like morphology. These squama-like HAP self-assemble to microspheres with hydrothermal reaction time prolonged.

Cite this article

LIU Jin-Hua , WANG Da-Zhi . Cuttlebone and Its Hydrothermal Converting to Hydroxyapatite[J]. Journal of Inorganic Materials, 2006 , 21(2) : 433 -440 . DOI: 10.3724/SP.J.1077.2006.00433

References

1 Ozin G A, Varaksa N, Coombs N, et al. J Mater. Chem., 1997, 7 (8): 1601--1607.
2 Doremus R H. J. Mater. Sci., 1992, 27 (2): 285--297.
3 Suchanek W, Yoshimura M. J. Mater. Res., 1998, 13 (1): 94--117.
4 Miyake M, Watanabe K, Nagayama Y, et al. J. Chem. Soc., Faraday Trans., 1990, 86 (12): 2303--2306.
5 Tanizawa Y, Sawamura K, Suzuki T. J. Chem. Soc., Faraday Trans., 1990, 86 (24): 4025--4029.
6 Boskey A L, Posner A S. J. Phys. Chem., 1976, 80 (1): 40--45.
7 Paul W, Sharma C P. J. Mater. Sci. Lett., 1995, 14 (24): 1792--1794.
8 Abrams L, Bajpai P K. Biomed. Sci. Instrum., 1994, 30: 169--174.
9 Uchida A, Shinto Y, Araki N, Ono K. J. Orthop. Res., 1992, 10: 440--445.
10 Kunieda K, Seki T, Nakatani S, et al. British J. Cancer., 1993, 67 (4): 668--673.
11 Birchall J D, Thomas N L. J. of Mater. Sci., 1983, 18: 2081--2086.
12 Ogasawara W, Shenton W, Davis S A, et al. Chem. Mater., 2000, 12: 2835--2837.
13 彭文世, 刘高魁. 矿物红外光谱图集, 第一版. 北京: 科学出版社, 1982. 149.
14 刘羽, 钟康年, 胡文云. 材料科学与工程, 1997, 15 (1): 63--65.
15 Roy D M, Eysel W, Dinger D. Mater. Res. Bull., 1974, 9 (1): 35--39.
16 Zaremba C M, Morse D E, Mann S, et al. Chem. Mater., 1998, 10 (12): 3813--3824.
17 Belcher A M, Wu X H, Christensen R J, et al. Nature, 1996, 381 (6577): 56--58.
18 许善锦, 张法浩, 方国永, 等. 科学通报, 1997, 42 (2): 199--202.
19 Eysel W, Roy D M. Z. Kristal, Bd., 1975, 141 (S): 11--24.
20 Roy D M, Linnehan S K. Nature, 1974, 247: 220--222.
21 Kawasaki T, Niikura M, Kobayashi Y. J. Chromatography, 1990, 515: 125--148.
22 Fierro J L G, Teguca L G. Appl. Surface. Sci., 1987, 27: 453--457.
23 沈卫, 顾燕芳, 刘昌胜, 等. 硅酸盐通报, 1996, 15 (1): 45--52.
Outlines

/