Research Paper

Preparation and Characterization of Porous Apatite-Wollastonite/β-Tricalcium Phosphate Composite Scaffolds

  • XIAO Bin ,
  • ZHOU Da-Li ,
  • YANG Wei-Zhong ,
  • OU Jun ,
  • TANG Yan-Juan ,
  • CHEN Huai-Qing
Expand
  • 1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China;
    2. Institute of Biomedical Engineering, Sichuan University, Chengdu 610041, China

Received date: 2005-04-28

  Revised date: 2005-09-19

  Online published: 2006-03-20

Abstract

Porous apatite-wollastonite/β-tricalcium phosphate composite scaffolds (AW/β-TCP) were prepared from apatite-wollastonite (AW) glass-ceramic powders and
β-tricalcium phosphate (β-TCP) bioceramic powders, using stearic acid as porogen. The mixture powders were allowing compression molding and firing at 1170℃ to obtain porous composite scaffolds. Characteristics of the scaffolds were determined by X-ray diffraction (XRD), scan electron microscope (SEM), energy dispersive spectrum (EDS), inductively couple plasma atomic emission spectroscopy (ICP-AES) and so on. Rat mesenchymal stem cells (rMSCs) were co-cultured with AW/β-TCP in vitro to evaluate the biocompatibility of the composite. Results show that: AW/β-TCP composite scaffolds with 30wt% of stearic acid reach the compressive strength of 14.3MPa, with the porosity as high as 66.9% and pore diameter ranging from 100 to 700\mum. In vitro experiments reveal that AW/β-TCP scaffolds are biocompatible, bioactive and biodegradable. The porous AW/β-TCP composite is expected to be a andidate scaffold for bone tissue engineering.

Cite this article

XIAO Bin , ZHOU Da-Li , YANG Wei-Zhong , OU Jun , TANG Yan-Juan , CHEN Huai-Qing . Preparation and Characterization of Porous Apatite-Wollastonite/β-Tricalcium Phosphate Composite Scaffolds[J]. Journal of Inorganic Materials, 2006 , 21(2) : 427 -432 . DOI: 10.3724/SP.J.1077.2006.00427

References

1 De Aza P N, Gutian F, De Aza S. Biomaterials, 1997, 18 (19): 1285--1291.
2 De Aza P N, Z. Lukinska B, Anseu M R, et al. Biomaterials, 2000, 21 (17): 1735--1741.
3 Huang X, Jiang D L, Tan S H. Journal of Biomedical Materials Research, 2004, 69B (1): 70--72.
4 杨为中, 周大利, 尹光福, 等(Yang W Z, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2004, 32 (2): 171--176.
5 Ohtsuki C, Kokubo T, Yamamuro T. J Non Cryst Solids, 1992, 143: 84--92.
6 Kim B S, Mooney D J. Trends Biotechnol, 1998, 16 (5): 224--230.
7 周大利, 郑昌琼, 尹光福, 等(Zhou DL, et al). 生物医学工程
学杂志(Journal of Biomedical Engineering), 1999, 16 (增刊): 52--55.
8 Kokubo T. J Non Cryst Solids, 1990, 120 (1-2): 138--151.
9 Han J, Chen R, Chen H Q, et al. J WCUMS, 2001, 32 (2): 235.
10 Abiraman S, Varma H K, Kumari T V, et al. Bull. Mater. Sci., 2002, 25 (5): 419--429.
11 Matsuoka H, Akiyama H, Okada Y, et al. Journal of Biomedical Materials Research, 1999, 47 (2): 176--188.
12 Hiroshi Fujita, Kazuhiro Ido, Yasutaka Matsuda, et al.
Porous AW Glass Ceramic as a Femoral Intramedullary Plug. In: 11th International
Symposium on Ceramics in Medicine New York City, New York, USA, 1998. 645--648.
13 Teramoto H, Kawai A, Sugihara S, et al. Key Engineering Materials, 2003, 240-242: 269--272.
Outlines

/