Research Paper

Influence of Ni Doping on the Thermoelectric Properties of Co4-xNixSb12

  • ZHAO Xue-Ying ,
  • SHI Xun ,
  • CHEN Li-Dong ,
  • TANG Xin-Feng
Expand
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, CAS, Shanghai 200050, China;
    2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China;
    3. The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Received date: 2005-04-28

  Revised date: 2005-06-28

  Online published: 2006-03-20

Abstract

Skutterudite compound Co4-xNixSb12 was synthesized by the melting method and its thermal and electrical properties were measured in the temperature range of 300~850K. The carrier concentration and electrical conductivity increase with increasing Ni content substituting for Co. The absolute value of Seebeck coefficient decreases and T opt of Seebeck coefficient shifts to a higher temperature with the increase of Ni content. These different transport behaviors in the samples are ascribed to the introduction of extra electrons to the Skutterudite structure by Ni substitution. The lattice thermal conductivity of Co4-xNixSb12 is significantly depressed as compared to that of CoSb3 by introducing extra electron-phonon scattering mode. The maximum ZT value obtained for Co3.92Ni0.08Sb12 at 750K is about 0.55.

Cite this article

ZHAO Xue-Ying , SHI Xun , CHEN Li-Dong , TANG Xin-Feng . Influence of Ni Doping on the Thermoelectric Properties of Co4-xNixSb12[J]. Journal of Inorganic Materials, 2006 , 21(2) : 392 -396 . DOI: 10.3724/SP.J.1077.2006.00392

References

1 刘宏, 王继杨. 功能材料, 2000, 31 (2): 116--118.
2 朱文, 杨君友, 崔昆, 等. 材料科学与工程, 2002, 20 (4): 585--588.
3 胡淑红, 朱铁军, 赵新兵, 等. 功能材料, 2001, 32 (2): 113--114.
4 刘宏, 王继杨, 张承乾, 等. 高技术通讯, 2001, (5): 104--107.
5 Sales B C, Mandrus D, Williams R K. Science, 1996, 272 (31): 1325--1328.
6 Sales B C, Mandrus D, Chakoumakos B C, et al. Phys. Rev. B, 1997, 56 (23): 15081--15089.
7 唐新峰, 陈立东, 後腾孝, 等. 物理学报, 2001, 50 (8): 1560--1565.
8 Bertini Luca, Stiewe Christian, Toprak Muhammet, et al. J. Appl. Phys., 2003, 93 (1): 438--447.
9 唐新峰, 陈立东,後腾孝, 等. 物理学报, 2000, 49 (6): 1120--1123.
10 Yang J, Meisner G P, Morelli D T, et al. Phys. Rev. B, 2000, 63 (1): 014410-1-11.
11 Katsuyama S, Shichijo Y, Lto M, et al. J. Appl. Phys., 1998, 84 (12): 6708--6712.
12 Anno H, Akai K, Nagao J, et al. Proc. Int. Conf. Thermoelectr. (20th), 2001. 101--104.
13 Dyck J S, Chen W, Yang J, et al. Proc. Int. Conf. Thermoelectr. (20 th), 2001. 65--68.
14 Yang J, Morelli D T, Meisner G P, et al. Phys. Rev. B, 2002, 65 (9): 094115-1-5.
15 Caillat T, Borshchevsky A, Fleurial J P. J. Appl. Phys., 1996, 80 (8): 4442--4449.
16 Katsuyama S, Watanabe M, Kuroki M, et al. J. Appl. Phys., 2003, 93 (5): 2758--2764.
Outlines

/