Research Paper

Spectral Properties and Thermal Stability of Erbium-doped TeO2-WO3-La2O3 Glass

  • ZHU Lin ,
  • XU Tie-Feng ,
  • NIE Qiu-Hua ,
  • SHEN Xiang
Expand
  • Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China

Received date: 2005-04-07

  Revised date: 2005-05-26

  Online published: 2006-03-20

Abstract

Er3+-codoped TeO2-WO3-La2O3 glasses were prepared. The thermal stability and spectral properties, such as absorption spectra, emission spectra of the glass samples were measured and investigated. Three intensity parameters, electric dipole transition, magnetic dipole transitions were calculated by Judd-Ofelt theory. The relationship of Ω2 and glass composition was analyzed. The emission cross-section of the 4I13/24I15/2 transition of Er3+ ions was calculated by McCumber theory. When La2O3 content was up to 5mol%, glass samples showed no onset crystallization temperature (Tx), indicating that they are saitable
for fiber drawing. The results show that TeO2-WO3-La2O3 glass has a good thermal stability and will be a promising host material for 1.5
μm broadband amplification.

Cite this article

ZHU Lin , XU Tie-Feng , NIE Qiu-Hua , SHEN Xiang . Spectral Properties and Thermal Stability of Erbium-doped TeO2-WO3-La2O3 Glass[J]. Journal of Inorganic Materials, 2006 , 21(2) : 351 -356 . DOI: 10.3724/SP.J.1077.2006.00351

References

1. Mori A, Ohishi Y, Sudo S. Electron. Lett., 1997, 33 (10): 863--864.
2. Le Neindre, Jiang S, Hwang B C. J. Non-cryst. Solids.,
1999, 255: 97--101.
3. Wang J S, Vogel E M, Snitzer E. Opt. Mater., 1994, 3:
187--203.
4. Ding Y, Jiang S, Hwang B C, et al. Opt. Mater., 2000, 15:
123--130.
5. Yamada M, Mori A, Kobayashi K, et al. IEEE Photonics Technology
Letters, 1998, 10 (9): 1244--1250.
6. Hocd\acute e S, Jiang S, Peng X, et al. Opt. Mater.,
2004, 25: 149--153.
7. 邱关明, 等编. 稀土光学玻璃, 北京: 兵器工业出版社, 1989. 85--89.
8. Judd B R. Phys. Rev., 1962, 127 (3): 750--760.
9. Ofelt G S. J. Chem. Phys., 1962, 37 (3): 511--520.
10. Dhiraj K S, John B G, Bahram Z, et al. J. Appl. Phys.,
2003, 93: 2041--2043.
11. Tanabe S, Ohyagi T, Soga N, et al. phys. Rev. B., 1992,
46: 3305--3310.
12. Weber M J. Phys. Rev., 1967, 156 (2): 231--240.
13. Ebendorff-Heidepriem H, Ehrt D. J. Non-cryst. Solids.,
1996, 208: 205--210.
14. Ebendorff-Heidepriem H, Ehrt D, Bettinelli M, et al. J. Non-
cryst. Solids., 1998, 240: 66--71.
15. Shaltout I, Tang Y, Braunstein R, et al. J. Phys. Chem.
Solids., 1995, 56: 141--146.
16. Yang J, Dai S, Zhou Y, et al. J. Appl. Phys., 2003, 93
(2): 977--983.
17. Tanabe S, Hanada T. J. Non-cryst. Solids., 1996, 196:
101--105.
18. McCumber D E. Phys. Rev. A, 1964, 134: 299--310.
19. Miniscalo W J, Quimby R S. Opt. Lett., 1991, 16: 258
--263.
20. Neindre L L, Jiang S, Hwang B C. J. Non-cryst. Solids.,
1999, 255: 97--101.
21. 西北轻工业学院主编. 玻璃工艺学. 北京: 中国轻工业出版社, 1982. 22-
-23.

Outlines

/