Invited Review

Boride Ceramics: Densification, Microstructure Tailoring and Properties Improvement

  • ZHANG Guo-Jun ,
  • ZOU Ji ,
  • NI De-Wei ,
  • LIU Hai-Tao ,
  • KAN Yan-Mei
Expand
  • (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Received date: 2011-04-24

  Revised date: 2011-06-14

  Online published: 2012-02-16

Supported by

National Natural Science Foundation of China (50632070, 50972152, 91026008, 51111140017)

Abstract

Borides, including TiB2, ZrB2, HfB2, B4C and BN, have good physical and chemical properties, which have been proposed for a variety of applications in extreme environments, such as ultra-high temperature, super-hard and super-hydrophobic. However, the engineering applications of these borides are still restricted by their poor sinterability and unsatisfied material properties including low fracture toughness. In regard with the advantages of pressureless sintering in preparation of ceramics, the main factors that affect the pressureless sintering of borides are discussed. The pressureless sintering technology of borides represented by oxygen removing mechanism is summarized. In consideration of the low toughness of borides, the microstructure tailoring methods represented by platelet toughening and nano phase reinforced are emphasized. At last, the methods for preparing textured boride ceramics are also briefly introduced.

Cite this article

ZHANG Guo-Jun , ZOU Ji , NI De-Wei , LIU Hai-Tao , KAN Yan-Mei . Boride Ceramics: Densification, Microstructure Tailoring and Properties Improvement[J]. Journal of Inorganic Materials, 2012 , 27(3) : 225 -233 . DOI: 10.3724/SP.J.1077.2011.00225

References

[1] Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007, 90(5): 1347-1364.

[2] Thévenot F. Boron carbide--a comprehensive review. J. Eur. Ceram. Soc., 1990, 6(4): 205-225.

[3] Eichler J, Lesniak C. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc., 2008, 28(5): 1105-1109.

[4] Becher P F. Microstructural design of toughened ceramics. J. Am. Ceram. Soc., 1991, 74(2): 255-269.

[5] Padture N P. In situ-toughened silicon-carbide. J. Am. Ceram. Soc., 1994, 77(2): 519-523.

[6] Yang F Y, Zhang X H, Han J C, et al. Preparation and properties of ZrB2-SiC ceramic composites reinforced by carbon nanotubes. J. Inorg. Mater., 2008, 23(5): 950-954.

[7] Zhu T, Xu L, Zhang X H, et al. Densification, microstructure and mechanical properties of ZrB2-SiCw ceramic composites. J. Eur. Ceram. Soc., 2009, 29(13): 2893-2901.

[8] Zhang G J, Deng Z Y, Kondo N, et al. Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc., 2000, 83(9): 2330-2332.

[9] Zhang X H, Li W J, Hong C Q, et al. Microstructure and mechanical properties of hot pressed ZrB2-SiCp-ZrO2 composites. Mater. Lett., 2008, 62(15): 2404-2406.

[10] Wu H T, Zhang W G. Fabrication and properties of ZrB2-SiC-BN machinable ceramics. J. Eur. Ceram. Soc., 2010, 30(4): 1035-1042.

[11] Baik S, Becher P F. Effect of oxygen contamination on densification of TiB2. J. Am. Ceram. Soc., 1987, 70(8): 527-530.

[12] Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless densification of zirconium diboride with boron carbide additions. J. Am. Ceram. Soc., 2006, 89(5): 1544-1550.

[13] Fahrenholtz W G, Hilmas G E, Zhang S C, et al. Pressureless sintering of zirconium diboride: particle size and additive effects. J. Am. Ceram. Soc., 2008, 91(5): 1398-1404.

[14] Brynestad J, Bamberger C E, Land J F, et al. Removal of oxide contamination from TiB2 powders. J. Am. Ceram. Soc., 1983, 66(11): C215-C216.

[15] Zhang H, Yan Y J, Huang Z R, et al. Pressureless sintering of ZrB2-SiC ceramics: the effect of B4C content. Scr. Mater., 2009, 60(7): 559-562.

[16] Yan Y J, Zhang H, Huang Z R, et al. In situ synthesis of ultrafine ZrB2-SiC composite powders and the pressureless sintering behaviors. J. Am. Ceram. Soc., 2008, 91(4): 1372-1376.

[17] Zou J, Zhang G J, Kan Y M, et al. Pressureless densification of ZrB2-SiC composites with vanadium carbide. Scr. Mater., 2008, 59(3): 309-312.

[18] Wang X G, Guo W M, Zhang G J. Pressureless sintering mechanism and microstructure of ZrB2-SiC ceramics doped with boron. Scr. Mater., 2009, 61(2): 177-180.

[19] Wang X G, Liu J X, Kan Y M, et al. Slip casting and pressureless sintering of ZrB2-SiC ceramics. J. Inorg. Mater., 2009, 24(4): 831-835.

[20] Chamberlain A L, Fahrenholtz W G, Hilmas G E. Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc., 2006, 89(2): 450-456.

[21] Zou J, Zhang G J, Kan Y M, et al. Hot-pressed ZrB2-SiC ceramics with VC addition: chemical reactions, microstructures, and mechanical properties. J. Am. Ceram. Soc., 2009, 92(12): 2838-2846.

[22] Zou J, Zhang G J, Sun S K, et al. ZrO2 removing reactions of Groups IV-VI transition metal carbides in ZrB2 based composites. J. Eur. Ceram. Soc., 2011, 31(3): 421-427.

[23] Zou J, Zhang G J, Kan Y M, et al. Pressureless sintering mechanisms and mechanical properties of hafnium diboride ceramics with pre-sintering heat treatment. Scr. Mater., 2010, 62(3): 159-162.

[24] Zou J, Zhang G J, Kan Y M. Pressureless densification and mechanical properties of hafnium diboride doped with B4C: from solid state sintering to liquid phase sintering. J. Eur. Ceram. Soc., 2010, 30(12): 2699-2705.

[25] Lee H, Speyer R F. Pressureless sintering of boron carbide. J. Am. Ceram. Soc., 2003, 86(9): 1468-1473.

[26] Cho N T, Bao Z H, Speyer R F. Density- and hardness-optimized pressureless sintered and post-hot isostatic pressed B4C. J. Mater. Res., 2005, 20(8): 2110-2116.

[27] Zhang G J, Ando M, Ohji T, et al. High-performance boron nitride- containing composites by reaction synthesis for the applications in the steel industry. Int. J. Appl. Ceram. Technol., 2005, 2(2): 162-171.

[28] Hagio T, Kobayashi K, Yoshida H, et al. Sintering of the mechanochemically activated powders of hexagonal boron-nitride. J. Am. Ceram. Soc., 1989, 72(8): 1482-1484.

[29] Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite. J. Am. Ceram. Soc., 2006, 89(7): 2320-2322.

[30] Otani S, Korsukova M M, Mitsuhashi T. Preparation of HfB2 and ZrB2 single crystals by the floating-zone method. J. Cryst. Growth, 1998, 186(4): 582-586.

[31] Tao X Y, Dong L X, Wang X N, et al. B4C- nanowires/carbon-microfiber hybrid structures and composites from cotton t-shirts. Adv. Mater., 2010, 22(18): 2055-2059.

[32] Zhang G J, Yue X M, Jin Z Z. Preparation and microstructure of TiB2-TiC-SiC platelet-reinforced ceramics by reactive hot-pressing. J. Eur. Ceram. Soc., 1996, 16(10): 1145-1148.

[33] Zhang G J, Jin Z Z, Yue X M. A multilevel ceramic composite of TiB2-Ti0.9W0.1C-SiC prepared by in situ reactive hot pressing. Mater. Lett., 1996, 28(1/2/3): 1-5.

[34] Zhang G J, Yue X M, Jin Z Z, et al. In-situ synthesized TiB2 toughened SiC. J. Eur. Ceram. Soc., 1996, 16(4): 409-412.

[35] Wu W W, Zhang G J, Kan Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800℃. J. Am. Ceram. Soc., 2006, 89(9): 2967-2969.

[36] Zou J, Zhang G J, Kan Y M. Formation of tough interlocking microstructure in ZrB2-SiC-based ultrahigh-temperature ceramics by pressureless sintering. J. Mater. Res., 2009, 24(7): 2428-2434.

[37] Zou J, Sun S K, Zhang G J, et al. Chemical reactions, anisotropic grain growth and sintering mechanisms of self-reinforced ZrB2–SiC doped with WC. J. Am. Ceram. Soc., 2011, 94(5): 1575-1583.

[38] Wu W W, Wang Z, Zhang G J, et al. ZrB2-MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing. Scr. Mater., 2009, 61(3): 316-319.

[39] Niihara K. Sustainable Materials Development Based on Nanocomposite Structures for the 21th Centry, Proceedings of the 6th International Symposium on Eco-Materials Proceding & Design. 2005, Korea, 41.

[40] Kusunose T, Choa Y H, Sekino T, et al. Mechanical properties of Si3N4/BN composites by chemical processing. Key Eng. Mater., 1999, 161-163: 475-480.

[41] Kusunose T, Sekino T, Choa Y H, et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc., 2002, 85(11): 2678-2688.

[42] Kusunose T, Sekino T, Choa Y H, et al. Machinability of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc., 2002, 85(11): 2689-2695.

[43] Zhang G J, Yang J F, Ando M, et al. Mullite-boron nitride composite with high strength and low elasticity. J. Am. Ceram. Soc., 2004, 87(2): 296-298.

[44] Wang X D, Qiao G J, Jin Z H. Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites. J. Am. Ceram. Soc., 2004, 87(4): 565-570.

[45] Kusunose T, Sekino T, Ando Y. Synthesis of SiC/BN nanocomposite powders by carbothermal reduction and nitridation of borosilicate glass, and the properties of their sintered composites. Nanotechnology, 2008, 19(27): 275603.

[46] Li J G, Gao L. Preparation of h-BN nano-film coated alpha-Si3N4 composite particles by a chemical route. J. Mater. Chem., 2003, 13(3): 628-630.

[47] Gao L, Jin X H, Li J G, et al. BN/Si3N4 nanocomposite with high strength and good machinability. Mater. Sci. Eng. A, 2006, 415(1/2): 145-148.

[48] Zhang G J, Yang J F, Ando M, et al. React
Outlines

/