Research Paper

Modulation Effects of K2ZrF6 Additive on Microstructure and Heat Resistance of Micro-arc Oxide Coatings Fabricated on LY12 Aluminum Alloy

Expand
  • (State Key Laboratory of Advanced Welding Production and Technology, Harbin Institute of Technology, Harbin 150001, China)

Received date: 2009-11-02

  Revised date: 2010-01-05

  Online published: 2010-07-19

Abstract

Zr(OH)4 particle can be formed and negatively charged in alkaline solution with K2ZrF6 addition. Based on this mechanism, Zr-containing ceramic coatings were fabricated on LY12 aluminum alloy by microarc oxidation (MAO) using K2ZrF6 as a special additive in Na2SiO3-KOH base electrolyte. The modulation effects of K2ZrF6 addition on micro-microstructure, element distribution and phase composition were analyzed by SEM, EDS and XRD, respectively. Heat resistance of MAO coatings formed on LY12 aluminum alloy in different electrolyte was investigated. The results show that the K2ZrF6 addition can increase the micro-arc oxidation rate and significantly alter the structure of MAO coatings. Both the top surface and inner surface of MAO coatings fabricated in Zr-containing electrolyte become relatively smooth. Compared with the coating formed in Zr-free electrolyte, a large amount of Zr element is found in the coating formed in electrolyte with K2ZrF6 addition. Two main phases, γ-Al2O3 and α-Al2O3, are contained in Zr-free coating. In contrast, more amorphous phase is found in Zr-containing coating with reduced amount of crystalline alumina. Experimental results also demonstrate that Zr-containing coating exhibits higher heat resistance.

Cite this article

ZHANG Xin-Meng, CHEN Dong-Fang, GONG Chun-Zhi , YANG Shi-Qin, TIAN Xiu-Bo . Modulation Effects of K2ZrF6 Additive on Microstructure and Heat Resistance of Micro-arc Oxide Coatings Fabricated on LY12 Aluminum Alloy[J]. Journal of Inorganic Materials, 2010 , 25(8) : 865 -870 . DOI: 10.3724/SP.J.1077.2010.00865

References

[1]刘萝威, 曹运红. 高温树脂基复合材料在超音速导弹弹体上的应用. 宇航材料工艺, 2002, (5): 15-19.
[2]Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering.Surf. Coat. Technol,1999, 122(2/3):73-93
[3]Current J A, Clyne T W. Porosity in plasma electrolytic oxide coatings.Acta Mater,2006, 54(7):1985-1993
[4]蒋百灵, 白力静, 蒋永锋.(JIANG Bai-Lin, et al) LY12铝合金表面氧化铝陶瓷层的生长过程. 中国有色金属学报(J. Nonferr. Metal Soc.), 2001, 11(S2): 186-189.
[5]吴汉华, 于凤荣, 李俊杰, 等 (WU Han-Hua et al). 铝合金微弧氧化陶瓷膜形成过程中的特性研究. 无机材料学报 (Journal of Inorganic Materials), 2004, 19(3): 617-622.
[6]Current J A, Clyne T W. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium.Surf. Coat. Technol,2005, 199(2/3):177-183
[7]Curran J A, Kalkanc- H, Magurova Y, et al. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications.Surf. Coat. Technol,2007, 201(21):8683-8687
[8]Shen D J, Wang Y L, Nash P, et al. Microstructure, temperature estimation and thermal shock resistance of PEO ceramic coatings on aluminum.J. Mater. Process. Technol,2008, 205(1/2/3):477-481
[9]Xin S G, Song L X, Zhao R G, et al. Composition and thermal properties of the coating containing mullite and alumina.Mater. Chem. Phys,2006, 97(1):132-136
[10]Butyagin P I, Khokhryakov Y V, Mamaev A I. Microplasma systems for creating coatings on aluminium alloys.Mater. Lett,2003, 57(11):1748-1751
[11]魏 涛, 雷廷权, 周 玉, 等. 陶瓷热障涂层的研究进展. 宇航材料工艺, 1997(3): 1-4.
[12]Matykina E, Arrabal R, Monfort F, et al. Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions.Appl. Surf. Sci,2008, 255(5):2830-2839
[13]Matykina E, Arrabal R, Monfort F, et al. Incorporation of zirconia nanoparticles into coatings formed on aluminum by AC plasma electrolytic oxidation. Appl. Surf. Sci., 2008, 38(10): 1375-1383.
[14]Shang W, Chen B Z, Shi X C, et al. Electrochemical corrosion behavior of composite MAO/sol–gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol–gel technique.J. Alloys Compd,2009, 474(1/2):541-545
[15]Wu Z D, Yao Z P, Jiang Z H. Preparation and structure of microarc oxidation ceramic coatings containing ZrO2 grown on LY12 alloy.Rare Metals,2008, 27(1):55-58
[16]Luo H H, Cai Q Z, Wei B K, et al. Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation.J. Alloys Compd,2009, 474(1/2):551-556
[17]Nedozorov P M, Kilin K N, Yarovaya T P, et al. Optical properties of ZrO2–containing anodic coatings on aluminum.J. Appl. Spectrosc,2001, 68(4):670-674
[18]辛世刚, 赵荣根, 都 徽, 等(XIN Shi-Gang et al). 铝合金表面氧化锆等离子体电解氧化涂层的制备及形成机理研究. 无机材料学报 (Journal of Inorganic Materials), 2009, 24(1): 107-110.
[19]许煜汾, 范文元. 陶瓷微滤膜分离Zr(OH)4悬浮液的研究. 中国粉体技术, 2000, 6(S1): 251-253
[20]Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte.Corros. Sci,2007, 49(2):672-693
[21]Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology.Surf. Coat. Technol,2003, 167 (2/3):269-277
[22]辛世刚, 宋力昕, 赵荣根, 等 (XIN Shi-Gang, et al). 微弧氧化Al-Si-O陶瓷涂层的结构与结合强度. 无机材料学报 (Journal of Inorganic Materials), 2006, 21(2): 493-498.
[23]Xue W B, Deng Z W, Chen R Y, et al. Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy.Thin Solid Films,2000, 372(1/2):114-117
[24]Matykina E, Arrabal R, Mohamed A, et al. Plasma electrolytic oxidation of pre-anodized aluminium.Corros. Sci,2009, 51(12):2897-2905

Outlines

/