Journal of Inorganic Materials >
Fabrication and Emission Property of Polycrystalline La0.4Pr0.6B6 Bulk Prepared by Spark Plasma Sintering
Received date: 2009-11-16
Revised date: 2010-01-26
Online published: 2010-06-10
The LaH2 and PrH2 nanopowders were prepared by hydrogen arc plasma method, and then dense single-phase polycrystalline La0.4Pr0.6B6 bulks were reactively fabricated starting from mixture of synthesized LaH2, PrH2 nanopowders and boron powders by spark plasma sintering (SPS). The influence of SPS sintering temperature on the microstructure and properties was investigated. Thermionic emission measurement of the sample sintered at 1400℃ and 40MPa was performed. It is shown that the pure phase La0.4Pr0.6B6 bulk can be easily fabricated by SPS when the sintering temperature is higher than 1350℃ and the density of the material increases with increasing temperature. The largest values of densities, Vickers hardness and bend strengths reach 4.82g/cm3, 19.14GPa and 225.13MPa, respectively. The largest emission current density of the cathode heated at 1873K is 30.65A/cm2. The work function at absolute zero is calculated to be 2.165eV by Richardson line method, and then the average value of effective work functions of the cathode at different temperatures are calculated to be 2.84eV.
MA Ru-Guang, LIU Dan-Min, ZHOU Shen-Lin, ZHANG Jiu-Xing . Fabrication and Emission Property of Polycrystalline La0.4Pr0.6B6 Bulk Prepared by Spark Plasma Sintering[J]. Journal of Inorganic Materials, 2010 , 25(7) : 743 -747 . DOI: 10.3724/SP.J.1077.2010.00743
[1]Lafferty J M. Boride cathodes. J. Appl. Phys., 1951, 22(3): 299-302.
[2]Tanaka T, Nishitani R, Oshima C, et al. The preparation and properties of CeB6, SmB6 and GdB6. J. Appl. Phys., 1980, 51(7): 3877-3883.
[3]Paderno Y, Paderno V, Filippov V. Some crystal chemistry relationships in eutectic cocrystallization of d- and f-transition metal borides. J. Alloys Compd., 1995, 219(1/2): 116-118.
[4]Otani S, Aizawa T, Yajima Y, et al. Floating zone growth of LaB6 crystals from the CaB6-added feed rods. J. Cryst. Growth, 2002, 234(2/3): 431-434.
[5]Bai Lina, Ma Ning, Liu Fengli. Structure and chemical bond characteristics of LaB6. Physica B, 2009, 404(21): 4086-4089.
[6]周身林, 刘丹敏, 张久兴, 等(ZHOU Shen-Lin, et al). 放电等离子反应液相烧结制备CeB6阴极与性能研究. 无机材料学报(Journal of Inorganic Materials), 2009, 24(4): 793-797.
[7]承 欢, 江剑平. 阴极电子学, 西安: 西北电讯工程学院出版社, 1986: 84-85, 200-201.
[8]Goebel Dan M, Watkins Ron M, Jameson Kristina K. LaB6 hollow cathodes for ion and hall thrusters. J. Propul. Power, 2007, 23(3): 552-558.
[9]Choi Y W, Cho C, Choi Y S, et al. Development of a 30-kW plasma gun system with a long lifetime. IEEE Trans. Plasma Sci., 2008, 36(5): 2765-2769.
[10]徐光宪. 稀土(下), 2版. 北京: 冶金工业出版社, 1995: 328-329.
[11]柳术平, 杨庆山, 陈卫平, 等. 多元稀土硼化物(La0.55Ba0.45)B6与(La0.4Eu0.6)B6阴极材料的研制. 稀有金属与硬质合金, 2006, 34(3): 8-11.
[12]周身林, 刘丹敏, 张久兴(ZHOU Shen-Lin, et al). 高纯多晶LaB6纳米块体阴极材料的制备及表征. 无机材料学报(Journal of Inorganic Materials), 2008, 23(6): 1199-1204.
[13]Spring A, Guo W M, Zhang G J, et al. Fabrication and characterization of ZrB2-based ceramic using synthesized ZrB2–LaB6 powder. J. Am. Ceram. Soc., 2008, 91(8): 2763-2765.
[14]Otani S, Nakagawa H, Nishi Y, et al. Floating zone growth and high temperature hardness of rare-earth hexaboride crystals: LaB6, CeB6, PrB6, NdB6, and SmB6. J. Solid State Chem., 2000, 154(1): 238-241.-
[15]Namura Masaru, Waki Ippei, Sato Yoshinori, et al. Preparation and characterization of lanthanum carbide encapsulated carbon nano-capsule/lanthanum hexaboride nanocomposites. Mater. Lett., 2009(63): 1307-1310.
[16]高瑞兰, 于化顺, 于普涟, 等. LaB6多晶材料的制备工艺研究.山东大学学报(工学版), 2002, 32(6): 593-596.
[17]宋晓艳, 刘雪梅, 张久兴. SPS过程中导电粉体的显微组织演变规律及机理. 中国科学E 辑: 技术科学(Sci. China Ser. E), 2005, 35(5): 459-469.
[18]姚剑峰, 陈 旭, 江剑平, 等. 单晶和多晶LaB6阴极发射性能的实验研究. 真空电子技术, 2002(1): 1-4.
/
〈 | 〉 |