Research Paper

Influence of Different Annealing Process on the Giant Mageto-impedance Effect of FeZrBCu Films

Expand
  • (1. Department of Physics, Shandong Institute of Education, Jinan 250013, China; 2. School of Physics, Shandong University, Jinan 250100, China)

Received date: 2009-11-11

  Revised date: 2010-01-26

  Online published: 2010-06-10

Abstract

Influence of different annealing process on the giant magneto-impedance (GMI) effect in soft magnetic alloy films of (Fe88Zr7B5)0.96Cu0.04, which were prepared by radio frequency (RF) sputtering, was studied. It is obtained that both natural and current annealing can reduce the longitudinal GMI ratio. And the longitudinal GMI ratio of the annealed films increases with the increase of annealing current, and reaches a maximum value of 17% at 800mA, while the sensitivity increase to 7%(kA/m)-1 at such annealing current (800mA). In addition, influence of the magnetic field annealing on GMI effect is discussed. It is found that both the longitudinal and transverse GMI ratios of the films after magnetic field annealed increase at different temperatures. There exists a critical temperature (250℃), at which the longitudinal GMI ration presents a single-peak with a value of 17.5%, while the transverse one presents a double-peak with a value of 17.8% at ±0.4kA/m.

Cite this article

WANG Wen-Jing, YUAN Hui-Min, XIAO Shu-Qin . Influence of Different Annealing Process on the Giant Mageto-impedance Effect of FeZrBCu Films[J]. Journal of Inorganic Materials, 2010 , 25(7) : 721 -724 . DOI: 10.3724/SP.J.1077.2010.00721

References

[1]Mandal K, Mandal S P, Vázquez M, et al. Giant magnetoimpedance effect in a positive magnetostrictive glass-coated amorphous microwire. Phys. Rev. B, 2002, 65(6): 64402-64407.
[2]Xiao S Q, Liu Y H, Yan S S, et al. Giant magnetoimpedance and domain structure in FeCuNbSiB films and sandwiched films. Phys. Rev. B, 2000, 61(8): 5734-5739.
[3]Muraca D, Cremaschi V, Knobel M, et al. Influence of Ge on magnetic and structural properties of Joule-heated Co-based ribbons: Giant magnetoimpedance response. J. Magn. Magn. Mater., 2008, 320(15): 2068-2073.
[4]Sinha S, Das B, Mandal K. Magnetoimpedance of a glass-coated amorphous microwire. J. Appl. Phys., 2009, 105(7): 07A311-1-3.
[5]Le Anh-Tuan, Phan Manh-Huong, Kim Chong-Oh, et al. Influences of annealing and wire geometry on the giant magnetoimpedance effect in a glass-coated microwire LC-resonator. J. Phys. D: Appl. Phys., 2007, 40(15): 4582-4585.
[6]Pompéia F, Gusm-o L A P, Barbosa C R Hall, et al. Ring shaped magnetic field transducer based on the GMI effect. Meas. Sci. Technol., 2008, 19(2): 025801-025810.
[7]Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys., 1988, 64(10): 6044-6046.
[8]Makino Akihiro, Hatanai Takashi, Naitoh Yutaka, et al. Applications of nanocrystalline soft magnetic Fe-M-B (M=Zr, Nb) alloys “NANOPERM(R)”. IEEE Trans. Magn., 1997, 33(5): 3793-3798.
[9]Suzuki Kiyonori, Makino Akihiro, Inoue Akihisa, et al. Low core losses of nanocrystalline Fe–M–B (M=Zr, Hf, or Nb) alloys. J. Appl. Phys, 1993, 74(5): 3316-3322.
[10]Lee Heebok , Kim Yong-Kook , Kim Taik-Kee, et al. Magnetoimpedance effect in nanocrystalline Fe90-xBxZr7Cu1Al2 (x= 2,4,6,8) alloys. J. Appl. Phys., 1999, 85(8): 5429-5431.
[11]Aragoneses P, Holzer D, Sassik H, et al. Frequency dependence of GMI effect in nanocrystalline Fe86Zr7B6Cu ribbons. J. Magn. Magn. Mater., 1999, 203(1/2/3): 292-294.
[12]黎 伦, 张 瑞, 孔祥薇, 等. Fe88Zr7B4Co软磁纳米晶薄带的巨磁阻抗效应. 金属功能材料, 2009, 16(4): 4-7.
[13]张 瑗, 朱逢吾, 宝野和博, 等(ZHANG Yuan, et al). Cu在非晶合金Fe-Zr-B结晶过程中的作用. 中国科学 E辑 (Sci. China Ser. E), 1998, 28(06): 485-490.
[14]何 峻, 郭慧群, 程利智, 等(HE Jun, et al). 电流退火对铁基薄带巨磁阻抗效应的影响. 物理学报(Acta Physica Sinica), 1999, 48(13): 159-163.

Outlines

/