Journal of Inorganic Materials >
Influence of Polar Tourmaline Substrates on the Growth of ZnO Nanoplates
Received date: 2009-11-03
Revised date: 2010-01-28
Online published: 2010-06-10
Nanoplate-shaped ZnO thin film was achieved by the ultrasonic spray pyrolysis technique, using polar (0001) tourmaline wafers as the growing substrates. The as-prepared nanoplates were cross-linked and upright- standing. XRD and Raman tests revealed the hexagonal structure of wurtzite. The electron probe microanalysis and M?ssbauer spectroscope were utilized to explore the chemical composition and the fine structures of Fe ions in tourmaline substrates. The plate-like growth of ZnO nanocrystals are related to the surface electric field effect of tourmaline crystals. With the variation of Fe ions contents, valence states and occupation characters, the ratio of thickness to diameter of the ZnO nanoplates decreases with the increase of the intrinsic dipole moments along the c axis and the strengthening of surface electric field effect in tourmaline crystals.
GUO Yun, XIA Yi-Ben, MIN Jia-Hua, ZHAO Yue, WANG Bin . Influence of Polar Tourmaline Substrates on the Growth of ZnO Nanoplates[J]. Journal of Inorganic Materials, 2010 , 25(7) : 717 -720 . DOI: 10.3724/SP.J.1077.2010.00717
[1]Li P G, Wang X, Tang W H. Facile route to well-aligned ZnO nanowire arrays. Mater. Lett., 2009, 63(8): 718-720.
[2]Alammar T, Mudring A V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater. Lett., 2009, 63(8): 732-735.
[3]Cho S H, Shim D S, Jung S H, et al. Fabrication of ZnO nanoneedle arrays by direct microwave irradiation. Mater. Lett., 2009, 63(8): 739-741.
[4]刘晓新, 靳正国, 王 慧, 等 (LIU Xiao-Xin, et al), ZnO棒晶阵列薄膜的水溶液法生长. 无机材料学报(Journal of Inorganic Materials), 2006, 21(4): 999-1004.
[5]Min S K, Mane R S, Joo O S, et al. Upright-standing ZnO nano-sheets growth using wet chemistry. Curr. Appl. Phys., 2009, 9(2): 492-495.
[6]Xu F, Lu Y N, Xie Y, et al. Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution. Mater. Des., 2009, 30(5): 1704-1711.
[7]Cheng J P, Zhang X B, Luo Z Q. Oriented growth of ZnO nanostructures on Si and Al substrates. Surf. Coat. Technol., 2008, 202(19): 4681-4686.
[8]Zhao B J, Yang H J, Du G T, et al. High-quality ZnO/GaN/Al2O3 heteroepitaxial structure grown by LP–MOCVD. J.Cryst. Growth, 2003, 258(1/2): 130-134.
[9]Cui Y G, Du G T, Zhang Y T, et al. Growth of ZnO(002) and ZnO(100) films on GaAs substrates by MOCVD. J. Cryst. Growth, 2005, 282(3/4): 389-393.
[10]孙 柏, 李锐鹏, 赵朝阳, 等(SUN Bai, et al), 6H-SiC表面单晶ZnO的制备及其结构表征. 无机材料学报(Journal of Inorganic Materials), 2008, 23(4): 753-757.
[11]Wu Y L, Zhang L W, Xie G L, et al. Structural and electrical properties of (110) ZnO epitaxial thin films on (001) SrTiO3 substrates. Solid State Commun.,2008, 148(5/6): 247-250.
[12]展 杰, 郝霄鹏, 刘 宏,等(ZHAN Jie, et al). 天然矿物功能晶体材料电气石的研究进展. 功能材料, 2006, 37(4): 524-527.
[13]Yamaguchi S. Surface electric fields of tourmaline. Appl. Phys. A, 1983, 31(4): 183-185.
[14]Shigenobu K, Matsumura T, Nakamura T, et al. Ecological Uses of Tourmeline. First International Symposium on Enviromental Conscious Design and Inverse Manufacturing, 1999, 912-915.
[15]郭 昀, 桑文斌, 王汝成, 等. 电气石晶体穆斯堡尔谱特征的聚类分析. 功能材料, 2008, 39(12): 2113-2116.
[16]Zhao C C, Zhang D, Liao L B, et al. Influence of content-valace and distribution of iron in iron- magnesium tourmalines on their intrinsic dipole moments. Journal of the Chinese Ceramic Society, 2008, 36(6): 854-857.
/
〈 |
|
〉 |