Research Paper

Fabrication of High Acoustic-Electric Efficient Piezoelectric Ceramic Bimorph Element and Pickup in Middle Ear of Cat

Expand
  • (1. Shanghai Eye & ENT hospital, Fudan Univeristy, Shanghai 200031, China; 2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3. Pante Electronic ceramic R&D center co. Ltd., Kunsan 211138, China)

Received date: 2009-11-11

  Revised date: 2009-12-22

  Online published: 2010-06-10

Abstract

A novel PZT piezoelectric ceramics with high d31 (-480pC/N) and Tc (280℃) was developed to shape a long strip of piezoelectric ceramic bimorph element (PCBE), with 0.3 mm in thickness, 1.0 mm in width and three lengths (3.5, 4.0, 4.5 mm), which were assembled to the cantilever structure anchoring a Preamplifier, and were implanted totally into tympanic cavity of cat ear to analyze their ability of picking up acoustic signal. This study explores that the PCBEs have high efficient acoustic-electric performance. They can pick up 20-20000Hz acoustic signal with an approximate flat frequency curve when they are implanted the tympanic cavity of cat. The maximal output of -13.16 dB Volt p-p value (@1.5kHz, 0dB input) is picked up by the 4.5mm PCBE. This validates that PCBE might be totally implanted into tympanic cavity of cat ear as a piezoelectric microphone.

Cite this article

KANG Hou-Yong, WU Yong-Zhen, CHI Fang-Lu, GUO Shao-Bo, GAO Na, PAN Tie-Zheng . Fabrication of High Acoustic-Electric Efficient Piezoelectric Ceramic Bimorph Element and Pickup in Middle Ear of Cat[J]. Journal of Inorganic Materials, 2010 , 25(7) : 691 -694 . DOI: 10.3724/SP.J.1077.2010.00691

References

[1]Wang S, Li J F, Wakabayashi K, et al. Lost silicon mold process for PZT microstructures. Adv. Mater., 1999, 11(10): 873-876.
[2]Haertling G H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc., 1999, 82(4): 797-818.
[3]Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998, 61(9): 1267-1324.
[4]董人禾, 董显林, 鲁 飞, 等 (DONG Ren-He, et al). 压电型人工耳蜗的实验研究. 无机材料学报(Journal of Inorganic Materials), 2002, 17(4): 862-866.
[5]陈 恒, 董显林, 鲁 飞, 等 (CHEN Hen, et al). 基于压电效应的人工耳蜗的实验研究. 无机材料学报(Journal of Inorganic Materials), 2007, 22(1): 185-188.
[6]迟放鲁, 严庆波. 可植入式传声器在全植入式电子耳蜗中的研究. 中华耳鼻咽喉科杂志, 2003, 38(3): 237-238.
[7]Chi F L, Wu Y, Yan Q B, et al. Sensitivity and fidelity of a novel piezoelectric middle ear transducer. ORL, 2009, 71(4): 216-220.
[8]Cohen N. The totally implantable cochlear implant. Ear Hear, 2007, 28(Supp l2): 100S-101S.
[9]Zhang H, Jiang S, Zeng Y. B site doping effect on depinning in Pb(Mn1/3Nb1/3Sb1/3)x(Zr0.825Ti0.175)1–xO3 ferroelectric ceramics. Appl. Phys. Lett., 2008, 93(19): 192901-1-3.
[10]王永龄. 功能陶瓷性能与应用. 北京: 科学出版社. 2003: 98-101.
[11]Majdoub M S, Sharma P, Cagin T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B, 2008, 78(12): 121407-1-4.
[12]Fang H, Liu L, Ren T. Modeling and design optimization of large-deflection piezoelectric folded cantilever microactuators. IEEE Trans Ultrason, 2006, 53(1): 237-240.
[13]Zürcher M A, Young D J, Semaan M, et al. Effect of Incus Removal on Middle Ear Acoustic Sensor For a Fully Implantable Cochlear Prosthesis. Conf. Proc. IEEE Eng. Med. Biol. Soc. ,New York, 2006, 1: 539-542.
[14]Afridi M, Hefner A, Berning D, et al. MEMS-based embedded sensor virtual components for system-on-a-chip (SoC). Solid-State Electronics, 2004, 48(10/11): 1777-1781.

Outlines

/