Hexadecyl trimethyl ammonium bromide (CTAB) was used as the additive in electrolyte for vanadium redox flow battery. Its stability and electrochemical performance were investigated by UV-Vis absorption spectrophotometry, scanning electron microscope(SEM), square wave voltammetry(SWV), cyclic voltammetry(CV) and examination of stabilization. The results show that the quaternary ammonium headgroups of CTAB micelles interacting with V(V) ions in electrolyte prevents pentavalent vanadium from further polymerization, which leads to a good suppression of the crystallization. The stable hemispherical particles forming at the graphite-liquid interface catalyze the redox reaction of V(IV)/V(V), which is called Micellar catalysis. EIS and charge-discharge tests show that the adding of CTAB makes charge transfer resistance much smaller, and doubles double-layer capacitance, so that the electrochemical reaction activity of the electrolyte improved, which is consistent with CTAB micellar catalysis.
WU Xue-Wen
,
LIU Su-Qin
,
HUANG Ke-Long
. Characteristics of CTAB as Electrolyte Additive for Vanadium Redox Flow Battery[J]. Journal of Inorganic Materials, 2010
, 25(6)
: 641
-646
.
DOI: 10.3724/SP.J.1077.2010.00641
[1]Fabjan C, Garche J, Harrer B, et al. The vanadium redox-battery: an efficient storage unit for photovoltaic systems. Electrochem. Acta, 2001, 47(5): 825-831.
[2]Joerissen L, Garche J, Fabjan Ch, et al. Possible use of vanadium redox-flow batteries for energy storage in small grids and stand- alone photovoltaic systems. J. Power Sources, 2004, 127(1/2): 98-104.
[3]Zhong S, Skyllas-Kazacos M. Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes. J. Power Sources, 1992, 39(1): 1-9.
[4]Skyllas-Kazacos M, Cheng M, Skyllas-Kazacos M. Vanadium redox cell electrolyte optimization studies. J. Appl. Electrochem. , 1990, 20(3): 463-467.
[5]Skyllas-Kazacos M, Menictas C, Skyllas M. Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell. J. Electrochem. Soc. , 1996, 143(4): 86-88.
[6]Skyllas-Kazacos M, Rychick M, Robins R. All-vanadium Redox Battery. US Patent, 4786567, 1988.11.22.
[7]Skyllas-Kazacos M, Grossmith F. Efficient vanadium redox flow cell. Journal of the Electochemical Society, 1987, 134(12): 2950-2953.
[8]Adamson A W. Physical Chemistry of Surfaces, 5th ed. New York: Wiley, 1990.
[9]Hiemenz P C. Principles of surface and colloid chemistry. New York: Marcel Dekker, 1986.
[10]Heyrovsky J, Kuta J. Principles of polarography. New York: Academic Press, 1966.
[11]Franklin T C, Mathew S. Surfactants in solution., Mittall K L, editor. New York: Plenum, 1989: 267-286.
[12]Vittal R, Gomathi H, Kim K J. Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Advances in Colloid and Interface Science, 2006, 119(1): 55-68.
[13]戚文彬, 朱利中. 混合表面活性剂在光度分析中的应用和发展. 分析测试通报, 1986(5): 1-7.
[14]Ishibashi N, Kina K. Sensitivity enhancement of the fluorometric determination of aluminum by the use of surfactant. Anal. Lett. , 1972, 5(9): 637-641.
[15]Chernova R K. Effect of some colloidal surfactants on spectrophotometric characteristics of metal chelates with chromophoric organic reagents. Zh. Anal. Khim. , 1977, 32(8): 1477-1486.
[16]Qi W B, Zhu L Z. Study of the mechanism of synergic sensitizing effect on color reaction by mixed ionic-nonionic surfactants. Chem. J. Chin. Univ. , 1986, 7: 407.
[17]Tharwat M, Awad A, Rashwan F. Effect of surfactants on kinetics of reduction of vanadium(V) in universal buffer solutions at the dropping mercury electrode. Revue Roumaine de Chimie, 1981, 26(3): 491-501.
[18]Avilova G I, Afanas'ev B N. Kinetics of the vanadium (III) -vanadium (II) reaction in the presence of surfactants. Elektrokhimiya, 1976, 12: 11.
[19]赵振国. 束催化与微乳催化. 北京: 化学工业出版社, 2006: 24.
[20]Burgess I, Jeffrey C A, Cai X, et al. Direct visualization of the potential-controlled transformation of hemimicellar aggregates of dodecyl sulfate into a condensed monolayer at the Au(111) electrode surface. Langmuir, 1999, 15(8): 2607-2616.
[21]Jiang M J, Dang Z M, Yao S H, et al. Effect of surface modification of carbon nanotubes on microstructure and electrical property in the nanotubes/rubber-matrix nanocomposites. Chemical Physics Letters, 2008, 457(4/5/6): 352-356.
[22]Choi K S, McFarland E W, Stucky G D. Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential- controlled surfactant assembly. Advanced Materials, 2003, 15(2323): 2018-2021.
[23]Nielsch K, Wehrspohn R B, Barthel J, et al. Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. , 2001, 79(9): 1360-1362.
[24]徐洪峰, 卢 璐, 朱少敏(XU Hong-Feng, et al). 石墨纳米纤维用作质子交换膜燃料电池催化剂载体. 催化学报(Chinese J. Catal.), 2008, 29(6): 542-546.
[25]Zhong Q L, Qing D H, Rusling J F. Films of hemoglobin and didodecyldimethylammonium bromide with enhanced electron transfer rates. Journal of Electroanalytical Chemistry, 1967, 423: 59-66.
[26]Fendler J H, Fendler E. Catalysis in micellar and macromolecular systems. New York: Academic Press, 1975.
[27]Marcus R A. Electron transfer reactions in chemistry: theory and experiment. Rev. Mod. Phys., 1997, 65(3): 599-610.
[28]Tavernier H L, Laine F, Fayer M D. Photoinduced intermolecular electron transfer in micelles: dielectric and structural properties of micelle headgroup regions. J. Phys. Chem. A, 2001, 105(39): 8944-8957.
[29]曹楚南, 张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 84-95.
[30]贾 铮, 戴长松, 陈 玲. 电化学测量方法.北京: 化学工业出版社, 2006: 61.