Research Paper

Effects of Hydrothermaly Synthesized Sb2Se3 Nanowires on the Thermoelectric Properties of Bi2Te3 Nanopowders

  • ZHANG Yan-Hua1 ,
  • 2 ,
  • XU Gui-Ying1 ,
  • GUO Zhi-Min2 ,
  • HAN Fei1 ,
  • WANG Ze1 ,
  • GE Chang-Chun1
Expand
  • (1. Institute of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; 2. Academy of Equipment Command & Technology, Beijing 102249, China)

Received date: 2009-10-14

  Revised date: 2009-12-03

  Online published: 2010-05-12

Abstract

Sb2Se3 nanowires were synthesized by a hydrothermal method at 150℃ for 3, 6,12 and 24 h using SbCl3 and Se powder as the precursors, N2H4·H2O as reductant. X-ray diffraction (XRD), transmission electron microscope (TEM), field emission scanning electron microscope (FESEM) and high-resolution TEM (HRTEM) were applied to analyze the phase distributions, microstructures and grain sizes of the nanostructured Sb2Se3. It was found that the pure orthorhombic Sb2Se3 nanowires were formed at 150℃ for 24h by the hydrothermal synthesis method. The reaction mechanism and crystal growth mechanism of Sb2Se3 nanowires were investigated in the light of the experimental results. The Sb2Se3 nanowires grow along the [001] direction. The formation mechanism is mainly related to the special crystal structure of Sb2Se3. The TE properties of SPS nanocomposites of Bi2Te3 with different amount of Sb2Se3 nanowires were investigated. The addition of 1 at% Sb2Se3 nanowires can improve the electric properties of the Bi2Te3 nanopowders.

Cite this article

ZHANG Yan-Hua1 , 2 , XU Gui-Ying1 , GUO Zhi-Min2 , HAN Fei1 , WANG Ze1 , GE Chang-Chun1 . Effects of Hydrothermaly Synthesized Sb2Se3 Nanowires on the Thermoelectric Properties of Bi2Te3 Nanopowders[J]. Journal of Inorganic Materials, 2010 , 25(6) : 615 -620 . DOI: 10.3724/SP.J.1077.2010.00615

References

[1]Nascimento V B, de Carvalho V E, Paniago R, et al. XPS and EELS study of the bismuth selenide. J. Electron. Spectrosc., 1999, 104(1): 99-107.

[2]Rajpure K Y, Lokhande C D, Bhosale C H. A comparative study of the properties of spray-deposited Sb2Se3 thin films prepared from aqueous and nonaqueous media. Mater. Res. Bull., 1999, 34(7): 1079-1087.

[3]Fernandez A M, Merino M G. Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications. Thin Solid Films, 2000, 366(1): 202-206.

[4]Arun P, Vedeshwar A G, Mehra N C. Laser-induced crystallization in amorphous films of Sb2C3(C = S, Se, Te), potential optical storage media. J. Phys. D: Appl. Phys., 1999, 32(3): 183-190.

[5]Kaito C, Saito Y, Fujita K. Studies on the structure and morphology of ultrafine particles of metallic sulfides. J. Crystal Growth, 1989, 94(4): 967-977.

[6]Arivuoli D, Gnanam F D, Ramasamy P. Growth and microhardness studies of chalcogenides of arsenic,antimony and bismuth. J. Mater. Sci. Lett., 1988, 7(7): 711-713.

[7]Wang D B, Yu D B, Mo M S, et al. Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals. J. Crystal Growth, 2003, 253 (1-4): 445-451.

[8]Shen G Z, Chen D, Tang K B, et al. A rapid ethylenediamine- assisted polyol route to synthesize Sb2E3 (E=S, Se) nanowires. J. Crystal Growth, 2003, 252(1/2/3): 350-354.

[9]Wang D B, Yu D B, Shao M W, et al. Growth of Sb2Se3 whiskers via a hydrothermal method. Materials Chemistry and Physics, 2003, 82(3): 546-550.

[10]Ma X C, Zhang Z D, Wang X, et al. Large-scale growth of wire-like Sb2Se3 microcrystallines via PEG-400 polymer chain- assisted route. J. Crystal Growth, 2004, 263 (1-4): 491-497.

[11]Zheng X W, Xie Y, Zhu L Y, et al. Growth of Sb2E3 (E = S, Se) polygonal tubular crystals via a novel solvent-relief-self-seeding process. Inorg. Chem., 2002, 41(3): 455-461.

[12]Wang J W, Deng Z X, Li Y D. Synthesis and characterization of Sb2Se3 nanorods. Materials Research Bulletin, 2002, 37(3): 495-502.

[13]Han Q F, Chen J, Lu J, et al. Preparation and characterization of belt-like Sb2Se3 crystals. Materials Letters, 2008, 62(14): 2050-2052.

[14]高 敏, 张景韶, ROWE D M. 温差电转换及其应用. 北京: 兵器工业出版社, 1996: 168-175.

[15]Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597-602.

[16]Deng Y, Zhou X S , Wei G D, et al. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J. Phys. Chem. Solids, 2002, 63(11): 2119-2121

[17]Deng Y, Nan C W, Wei G D, et al. Organic-assisted growth of bismuth telluride nanocrystals. Chem. Phys. Lett., 2003, 374(3/4): 410-415

[18]Zhao X B, Ji X H, Zhang Y H, et al. Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder. Appl. Phys. A, 2005, 80(7): 1567-1571

[19]Zhao X B, Ji X H, Zhang Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett., 2005, 86(6): 062111-1-3.
Outlines

/