(Ag2Te)x(Bi0.5Sb1.5Te3)1-x(x=0, 0.025, 0.05, 0.1) alloys were synthesized by “Melting-Ball Milling-Spark Plasma Sintering” method. Transport properties measurements indicate that the Ag2Te-doping can affect the temperature dependence of thermoelectric properties of the samples significantly. Samples with Ag2Te-doping have better thermoelectric performances in the temperature range from 450 K to 550 K. Appropriate amount of Ag2Te can enhance the phonon scattering of the alloys effectively, which lead to the lower thermal conductivities for these samples. Over the entire temperature range, sample (Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95 exhibits the lowest lattice thermal conductivities, ranging within 0.2-0.3 W/(m·K) from room temperature to 575 K. The maximum ZT value of 0.84 is obtained at 575 K for the sample (Ag2Te)0.05(Bi0.5Sb1.5Te3)0.95. Compared with the one without doping, the ZT value is increased by almost 20%.
SHEN Jun-Jie
,
ZHU Tie-Jun
,
YU Cui
,
YANG Sheng-Hui
,
ZHAO Xin-Bing
. Influence of Ag2Te Doping on the Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys[J]. Journal of Inorganic Materials, 2010
, 25(6)
: 583
-587
.
DOI: 10.3724/SP.J.1077.2010.00583
[1]Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043-1053.
[2]Rowe D M. Thermoelectric Hanbook-Macro to Nano. Boca Raton: CRC Press, 2006.
[3]Tritt T M. Thermoelectric materials - holey and unholey semiconductors. Science, 1999, 283(5403): 804-805.
[4]Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024-1027.
[5]Ettenberg M H, Maddux J R, Taylor P J, et al. Improving yield and performance in pseudo-ternary thermoelectric alloys (Bi2Te3)(Sb2Te3) (Sb2Se3). Journal of Crystal Growth, 1997, 179(3/4): 495-502.
[6]Yamashita O, Tomiyoshi S, Makita K. Bismuth telluride compounds with high thermoelectric figures of merit. Journal of Applied Physics, 2003, 93(1): 368-374.
[7]Drabble J R, Goodman C H L. Chemical bonding in bismuth telluride. Journal of Physics and Chemistry of Solids, 1958, 5(1/2): 142-144.
[8]Zhao X B, Ji X H, Zhang Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Applied Physics Letters, 2005, 86(6): 062111-1-3.
[9]Cao Y Q, Zhao X B, Zhu T J, et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 2008, 92 (14): 143106-1-3.
[10]Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634-638.
[11]Ma Y, Hao Q, Poudel B, et al. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Letters, 2008, 8(8): 2580-2584.
[12]Tang X F, Xie W J, Li H, et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Applied Physics Letters, 2007, 90(1): 012102-1-3.
[13]Xie W J, Tang X F, Yan Y G, et al. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 2009, 94(10): 102111-1-3.
[14]Cui J L, Xiu W J, Xue H F. High thermoelectric properties of p-type pseudobinary (Cu4Te3)(x)-(Bi0.5Sb1.5Te3)(1-x) alloys prepared by spark plasma sintering. Journal of Applied Physics, 2007, 101(12): 123713-1-4.
[15]Zhu P W, Imai Y, Yukihiro I, et al. High thermoelectric properties of PbTe doped with Bi2Te3 and Sb2Te3. Chinese Physics Letters, 2005, 22(8): 2103-2105.
[16]Zhou X S, Deng Y, Nan C W, et al. Transport properties of SnTe-Bi2Te3 alloys. Journal of Alloys and Compounds, 2003, 352(1/2): 328-332.
[17]Shen J J, Liu X X, Zhu T J, et al. Improved thermoelectric properties of La-doped Bi2Sr2Co2O9-layered misfit oxides. Journal of Materials Science, 2009, 44(7): 1889-1893.
[18]Mi J L, Zhao X B, Zhu T J, et al. Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites. Applied Physics Letters, 2007, 91(2): 172116-1-3.
[19]Rowe D M, Shukla V S, Savvides N. Phonon-scattering at grain-boundaries in heavily doped fine-grained silicon-germanium alloys. Nature, 1981, 290(5809): 765-766.