Nanocrystalline TiO2 powders were synthesized from TiCl4 solution by the highpressure microwave method under pressure ranging from 0.1MPa to 4.0MPa. The phase structures, microstructures and photocatalytic properties of the nanocrystalline
TiO2 were investigated. It was found that the reaction pressure had a large impact on the phase structures, microstructures,
and photocatalytic properties of the nanocrystalline TiO2. Under lower reaction pressure, TiO2 products consisted of anatase
and brookite phase, with the brookite phase in minority, while under higher reaction pressure, a large quantity of rutile
TiO2 was formed. With the increase of reaction pressure from 0.1MPa to 4.0MPa, the average sizes of the TiO2 nanoparticles
increased from 5nm to 30nm. At reaction pressures lower than 2.0MPa, the photocatalytic performance of the nanocrystalline
TiO2 increased with the pressure, while at pressures higher than 2.0MPa, the photocatalytic performance was found to decrease
monotonically with the pressure.
LIU Yu
,
ZHANG Ting
,
FU Min-Gong
,
LI Wang
,
DU Guo-Ping
. Photocatalytic Properties of Nanocrystalline TiO2 Synthesized by Highpressure Microwave Method[J]. Journal of Inorganic Materials, 2010
, 25(4)
: 375
-378
.
DOI: 10.3724/SP.J.1077.2010.00375
1]Jing D W, Zhang Y J, Guo L J. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalystic activity for
hydrogen evolution in aqueous methanol solution. Chemical Physics Letters, 2005, 415(1/2/3):74-78.
[2]Zhu Y F, Zhang L, Yao W Q, et al. The chemical states and properties of doped TiO2 film photocatalyst prepared using the
SolGel method with TiCl4 as a precursor. Applied Surface Science, 2000, 158(1/2):32-37.
[3]刘红艳, 高 濂(LIU Hong-Yan, et al). 湿化学法原位合成硫掺杂的纳米金红石TiO2可见光催化剂. 无机材料学报(Journal of
Inorganic Materials), 2005, 20(2):470474.
[4]Chen K Y, Chen Y W. Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion.
Powder Technology, 2004, 141(1/2):69-74.
[5]Bleic' M D, aponjic' Z V, Nedeljkovic' J M, et al. TiO2 films prepared by ultrasonic spray pyrolysis of nanosize
precusor. Materials Letters, 2002, 54(4):298-302.
[6]Zhang J, Wang B J, Ju X, et al. New observations on the optical properties of PPV/TiO2 nanocomposites. Polymer, 2001,
42(8):3697-3702.
[7]Maira A J, Yeung K L, Lee C Y, et al. Size ffects in gasphase photooxidation of trichloroethylene using nanometer
sized TiO2 catalysts. Journal of Catalysis, 2000, 192(1):185-196.
[8]Gundiah G, Rao C N R. Macroporous oxide materials with threedimensionally interconnected pores. Solid State Sciences,
2000, 2(8):877-882.
[9]张青红, 高 濂, 郭景坤(ZHANG Qing-Hong, et al). 四氯化钛水解法制备纳米氧化钛超细粉体. 无机材料学报(Journal of Inorganic
Materials), 2000, 15(1):21-25.
[10] Zhao Y, Li C Z, Liu X H, et al. Synthesis and optical properties of TiO2 nanoparticles. Materials Letters, 2007, 61
(1):79-83.
[11] 林元华, 张中太, 黄淑兰, 等(LIN Yuan-Hua,et al). 纳米金红石型TiO2粉体的制备及其表征. 无机材料学报(Journal of
Inorganic Materials), 1999, 14(6):853-860.
[12] Watson S, Beydoun D, Scott J, et al. Preparation of nanosized crystalline TiO2 particles at low temperature for
photocatalysis. Journal of Nanoparticle Research, 2004, 6(2):193-207.
[13] Bickley R I, GonzalezCarrenob T, Leesc J S, et al. A structural investigation of titanium dioxide photocatalysts.
Journal of Solid State Chemistry, 1991, 92(1):178-190.