Journal of Inorganic Materials >
Dynamic Effect of Citrate on Electrolytic Deposition of Hydroxyaptite on Ti Surface
Received date: 2009-05-27
Revised date: 2009-09-05
Online published: 2010-02-20
During electrolytic deposition process of hydroxyapatite(HA) on Ti surface, 2.4mmol/L citrate is added into the electrolyte containing 0.6mmol/L Ca2+ ion and 0.36mmol/L H2PO4- ion. The results show that the incubation period of the HA is prolonged significantly, and the HA crystals take the morphology of needlelike cone rather than the typical hexagonal prism. Through analyzing the deposition current, coating weight increment and crystal morphology changes, the whole deposition process is divided into 5 procedures: adsorption period, incubation period, eruptive growth period, extra-layer growth period and balanced growth period. Based on the further discussion of micro-mechanism of each period, the HA crystal growth model during electrolytic deposition process is proposed.
Key words: hydroxyapatite; citrate; electrolytic deposition; titanium
YANG Cheng-Xin , LIN Dong-Yang , JIANG Yong , WANG Xiao-Xiang . Dynamic Effect of Citrate on Electrolytic Deposition of Hydroxyaptite on Ti Surface[J]. Journal of Inorganic Materials, 2010 , 15(2) : 206 -210 . DOI: 10.3724/SP.J.1077.2010.00206
[1]Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed., 2002, 41(17):3130-3146.
[2]Hench L L. Bioceramics. J.Am.Ceram.Soc., 1998, 81(7):1705-1728.
[3]朱景川, 储成林, 尹钟大(ZHU Jing-Chuan, et al). 羟基磷灰石/钛生物功能梯度材料种植体与骨的结合强度. 稀有金属材料与工程(Rave Metal Mat. Eng.), 2003, 32(6):432-435.
[4]刘榕芳,肖秀峰, 陈古镛. 钛/羟基磷灰石涂层的电沉积过程及其结构特征.福建师范大学学报(自然科学版), 2001, 17(1):45-49.
[5]英国南安普顿电化学小组著, 柳厚田译. 电化学方法中的仪器方法. 上海:复旦大学出版社,1992:320.
[6]Ye Wei, Wang Xiao-Xiang. Ribbon-like and rod-like hydroxyapatite crystals deposited on titanium surface with electrochemical method. Mater. Lett., 2007, 61(19): 4062-4065.
[7] Ma Meng-Han, Ye Wei, Wang Xiao-Xiang. Effect of supersaturation on the morphology of hydroxyapatite crystals deposited by electrochemical deposition on titanium. Mater. Lett., 2008, 62(23): 3875-3877.
[8] Yang G L, He F M. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants.Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2009, 107(6): 782-789.
[9]López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R. The role of pH in the adsorption of citrate ions on hydroxyapatite. J. Colloid. Interf. Sci., 1998, 200(1): 114-120.
[10]Rhee S H, Tanaka J. Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials, 1999, 20(22):2155-2160.
[11]López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R. Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv. Mater. 1998, 10(1): 49-53.
[12] Li Chengfeng, Meng Fantao. Nano-crystallinite hydroxyapatite synthesized by neutralization with the assist of citric acid. Mater. Lett., 2008, 62(6/7):932-934.
[13]蔡明招. 分析化学实验. 北京:化学工业出版社, 2004:78-80.
[14]李 荻. 电化学原理,修订版. 北京:北京航空航天大学出版社,1999,163:196-198.
[15]Martins M A, Santos C, Almeida M M, et al. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species. J. Colloid Interf. Sci., 2008, 318(2):210-216.
[16] Brown W E, Smith J P, Frazier A W. Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature, 1962, 196(15):1050-1055.
[17] Xin Ren-Long, Leng Yang, Wang Ning. In situ TEM examinations of octacalcium phosphate to hydroxyapatite transformation. J. Cryst. Growth, 2006, 289(1): 339-344.
[18]Lu Xiong, Leng Yang. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 2005, 26(10): 1097-1108.
[19]Eliaz N, Kopelovitch W, Burstein L. Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by realtime quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis. J. Biomed. Mate. Res. A, 2009, 89(1): 270-280.
[20]Filgueirasa M R T, Mkhonto D, Leeuw N H. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces. J. Cryst. Growth, 2006, 294(1): 60-68.
[21]Leeuw N H, Rabone J A L. Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (01-10) surfaces in an aqueous environment. Cryst. Growth Eng. Comm., 2007, 9(12): 1178-1186.
[22]Jiang W G, Pan H H, Cai Y R, et al. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level. Langmuir, 2008, 24(21): 12446-12451.
/
〈 | 〉 |