Research Paper

Influence of Carrier on Catalytic Activity of Platinum Based Hydrophobic Catalysts

  • XIONG Liang-Ping ,
  • HU Sheng ,
  • REN Xing-Bi ,
  • LUO Yang-Ming
Expand
  • Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

Received date: 2009-07-08

  Revised date: 2009-08-25

  Online published: 2010-03-20

Abstract

In order to study the influence of carriers on platinum(Pt) based hydrophobic catalysts’ activity, and explore the practicability of applying silicon carbide and ceriumzirconium composite oxides as carriers of hydrophobic catalysts, Pt based catalysts were prepared by microwave heating method, with carbon black, nanometer SiC and Ce 0.4 Zr 0.6 O2-γ-Al2O3 as carriers, respectively. Then Pt based catalysts were loaded on foam nickel (FN) with polytetrafluoroethylene latex, and hydrophobic catalysts were obtained. Structure of catalysts was analyzed by XRD, TEM, XPS, SEM, etc, moreover, their catalytic activity for recombination of H2-O2 and hydrogen-water liquid catalytic exchange was tested. Results show that Pt particles are evenly distributed on carriers’ surface, and average size of Pt particles in Pt/C, Pt/SiC and Pt/Ce 0.4 Zr 0.6 O2-γ-Al2O3are 4.46, 1.67 and 1.77nm, respectively. Three valences, Pt (0), Pt (Ⅱ) and Pt (Ⅳ) exist in Pt/C and Pt/SiC catalysts. Pt/C and Pt/SiC catalyst particles are evenly distributed on the surface of foam nickel, but it is not the case for Pt/Ce 0.4 Zr 0.6 O2-γ-Al2O3. The catalytic activity of Pt/C/FN is quite high for both recombination of H2-O2 and hydrogenwater liquid catalytic exchange. The catalytic activities of Pt/SiC/FN and Pt/Ce 0.4 Zr 0.6 O2-γ-Al2O3/FN are high for recombination of H2-O2, however, they are quite low for hydrogen-water liquid catalytic exchange.

Cite this article

XIONG Liang-Ping , HU Sheng , REN Xing-Bi , LUO Yang-Ming . Influence of Carrier on Catalytic Activity of Platinum Based Hydrophobic Catalysts[J]. Journal of Inorganic Materials, 2010 , 25(3) : 279 -284 . DOI: 10.3724/SP.J.1077.2010.00279

References

[1]胡 胜, 罗阳明, 王和义, 等. 疏水催化剂应用进展.原子能科学技术, 2006, 40(6): 671-676.

[2]Li J, Suppiah S, Kutchcoskie K. Wetproofed Catalysts for Hydrogen Isotope Exchange. US Patent: 2004/0248735 A1, 2004.12.09.

[3]Antolini E, Cardellini F, Giacometti E, et al. Study on the formation of Pt/C catalysts by non-oxidized active carbon support and a sulfurbased reducing agent. J. Mater. Sci., 2002, 37(1): 133-139.

[4]Stoyanova A, Naidenov V, Petrov K, et al. Effect of preparation conditions on the structure and catalytic activity of carbon-supported platinum for the electrooxidation of methanol. J. Appl. ElectroChem., 1999, 29(10): 1197-1203.

[5]Wine G, Ledoux M J, Cuong P H. Supported BETA zeolite on preshaped β-SiC as clean friedel-crafts liquid-phase catalyst. Top. in Catal., 2007, 45(1-4): 111-116.

[6]Pesant L, Matta J, Garin F, et al. A high-performance Pt/β-SiC catalyst for catalytic combustion of model carbon particles (CPs). Appl. Catal. AGen., 2004, 266(11): 21-27.

[7]Nhut J M, Pesant L, Keller N, et al. Pd/SiC exhaust gas catalyst for heavy-duty engines: improvement of catalytic performances by controlling the location of the active phase on the support. Top. in Catal., 2004, 30-31(1): 353-358.

[8]Gatica J M, Baker R T, Fornasiero P, et al. Rhodium dispersion in a Rh/Ce 0.68 Zr 0.32 O2 catalyst investigated by HRTEM and H2 chemisorption. J. Phys. Chem. B, 2000, 104(19): 4667-4672.

[9]肖 莉, 林培琰, 杨志柏, 等. Ce-Zr固溶体的纯度及其在三效催化剂中的作用. 分子催化, 2000, 14(2): 81-86.

[10]万 李, 吴晓东, 樊 俊, 等(WAN Li, et al). 制备方法对钯铈锆固溶体催化剂的结构与性能的影响. 中国稀土学报(J. Rare Earth), 2004, 24(4): 522-526.

[11]Wang K, Li X J, Ji S F, et al. Effect of Ce x Zr 1-x O2 promoter on Nibased SBA-15 catalyst for steam reforming of methane. Energy Fuels, 2009, 23(1): 25-31.

[12]杨修春, 卢振光, 康晓春, 等(YANG Xiu-Chun, et al). ZrO2对NiO/CeO2/γAl2O3复合催化剂结构的影响. 无机材料学报(Journal of Inorganic Materials), 2009, 24(1): 187-191.

[13]胡 胜. 高分散度Pt基疏水催化剂制备及氢水液相催化交换性能研究. 绵阳: 中国工程物理研究院核物理与化学研究所博士论文, 2007.

Outlines

/