Research Paper

Investigation of Microwave Dielectric Properties of (Mg1-xZnx)2SiO4 (0≤x≤1) Ceramics

  • SONG Kai-Xin ,
  • YING Zhi-Hua ,
  • SHAO Li-Huan ,
  • ZHENG Liang ,
  • XU Jun-Ming ,
  • QIN Hui-Bin
Expand
  • College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Received date: 2009-07-08

  Revised date: 2009-09-21

  Online published: 2010-03-20

Abstract

The phase evolutions, microstructures, and microwave dielectric properties of (Mg 1-x Znx)2 SiO4 (0≤x≤1) ceramics were investigated. The XRD results show that Mg2SiO4 and Zn2SiO4 are partly limited solid solution in the systems of (Mg 1-x Znx)2 SiO4 ceramics, due to the large differences between their crystal structures. BESEM images show that with the increases of x, the second phase of MgSiO3 will be suppressed, and the occurrence of liquid phase sintering accelerates the growth of crystal grain and aggradations of glass phase in the boundary of grain. The dielectric constants of (Mg 1-x Znx)2 SiO4 ceramics gradually increase because of the polarization of Zn 2+ ion is larger than that of Mg 2+ ion. The microwave properties of (Mg 1-x Znx)2 SiO4 ceramics change with the variant of x value, together with external factors of the secondary phase, porosity and grain size of(Mg 1-x Znx)2 SiO4 ceramics. When x is equal to 0.6, the optimum microwave dielectric properties of (Mg 0.4 Zn 0.6 )2 SiO 4 ceramics is obtained:εr=6.6, Qf=95650GHz, τf=-60×10-6 /℃.

Cite this article

SONG Kai-Xin , YING Zhi-Hua , SHAO Li-Huan , ZHENG Liang , XU Jun-Ming , QIN Hui-Bin . Investigation of Microwave Dielectric Properties of (Mg1-xZnx)2SiO4 (0≤x≤1) Ceramics[J]. Journal of Inorganic Materials, 2010 , 25(3) : 255 -258 . DOI: 10.3724/SP.J.1077.2010.00255

References

[1]Reaney I M, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc., 2006, 89(7): 2063-2072.

[2] Fujii T, Ando A, Sakabe Y. Charaterization of dielectric properties of oxide materials in frequency range from GHz to THz. J. Eur. Ceram. Soc., 2006, 26(10/11):1857-1860.

[3] Penn S J, Alford N McN, Templeton A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc., 1997, 80(7): 1885-1888.

[4] Zheng C W, Wu S Y, Chen X M, et al. Modification of MgAl2O4 microwave dielectric ceramics by Zn-substitution. J. Am. Ceram. Soc., 2007,90(5): 1483-1486.

[5] Lei W, Lu W Z, Zhu J H, et al. Modification of ZnAl2O4-based lowpermittivity microwave dielectric ceramics by adding 2MO-TiO2(M=Co, Mg and Mn).J. Am. Ceram. Soc., 2008, 91(6): 1958-1961.

[6] Tsunooka T, Androu M, Higashida Y, et al. Microwave dielectric properties of forsterite based solid solutions. J. Eur. Ceram. Soc., 2003, 23(14): 2573-2578.

[7] Guo Y P, Ohsato H, Kakimoto K. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc., 2006, 26(10/11):1827-1830.

[8] Song M E, Kim J S, Joung M R, et al. Synthesis and microwave dielectric properties of MgSiO3 ceramics. J. Am. Ceram. Soc., 2008, 91(8):2747-2750.

[9] Song K X, Chen X M. Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Mater. Lett., 2007,61(17): 3127-3131.

[10] Hakki B W, coleman P D. A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. Micro. Theor. Tech., 1960, 8(4): 402-410.

[11] Segnit E R, Holland A E. The system MgO-ZnO-SiO2. J. Am. Ceram. Soc.
, 1965, 48(8): 409-413.

Outlines

/