Research Paper

Synthesis of BiFeO3 Nanoparticles by a Polyacrylamide Gel Route

  • XIAN Tao ,
  • YANG Hua ,
  • SHEN Xi ,
  • FENG You-Cai ,
  • ZHANG HaiMin2 ,
  • FENG Wang-Jun
Expand
  • 1. State Key Laboratory of Gansu Advanced Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China; 2. School of Science, Lanzhou University of Technology, Lanzhou 730050, China

Received date: 2009-05-11

  Revised date: 2009-09-30

  Online published: 2010-03-20

Abstract

A new polyacrylamide gel route was used to prepare BiFeO3 nanoparticles. In this route, the solution containing the required cations was gelled by using acrylamide; during the gelation process, acrylamide was polymerized to form a polymer network, which provided a structural framework for the growth of particles. It is demonstrated that highpurity BiFeO3 powders can be prepared using ethylenediaminetetraacetic acid (EDTA) as the chelating agent. On the other hand, it is found that adding an appropriate amount of glucose to the precursor solution can effectively suppress the gel shrinkage during drying, and consequently lead to a significant improvement of powder quality. Scanning electron microscope (SEM) observation reveals that the asprepared BiFeO3 powder has a uniform particle size, and the particles are almost spherical without any agglomeration or adhesion. Differential scanning calorimetry (DSC) analysis reveals that the product has an antiferromagnetic phase transition at about 370℃ and a ferroelectric phase transition at about 830℃. Ferroelectric and magnetic hysteresis loop measurements show that the product exhibits clear ferroelectric property and weak ferromagnetism.

Cite this article

XIAN Tao , YANG Hua , SHEN Xi , FENG You-Cai , ZHANG HaiMin2 , FENG Wang-Jun . Synthesis of BiFeO3 Nanoparticles by a Polyacrylamide Gel Route[J]. Journal of Inorganic Materials, 2010 , 25(3) : 251 -254 . DOI: 10.3724/SP.J.1077.2010.00251

References

[1]Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442(17): 759-765.

[2]Fischer P, Polomska M, Sosnowska I, et al. Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C, 1980, 13(10): 1931-1940.

[3]TabaresMunoz C, Rivera J P, Bezinges A, et al. Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys., 1985, 24(S2): 1051-1053.

[4]Béa H, Bibes M, Barthélémy A, et al. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett., 2005, 87(7): 072508-1-3.

[5]Lee Y H, Wu J M., Chueh Y L, et al. Lowtemperature growth and interface characterization of BiFeO3 thin films with reduced leakage current. Appl. Phys. Lett., 2005, 87(17): 172901-1-3.

[6]Palkar V R, John J, Pinto R. Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett., 2002, 80(9): 1628-1630.

[7]Chen F, Zhang Q F, Li J H, et al. Sol-gel derived multiferroic BiFeO3 ceramics with large polarization and weak ferromagnetism. Appl. Phys. Lett., 2006, 89(9): 092910-1-3.

[8]林元华, 姜厌辉, 何滋材, 等(LIN Yuan-Hua, et al). 多铁性氧化物基磁电材料的制备及性能. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2007, 35(S1): 10-21.

[9]Wang Y, Nan C W. Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett., 2006, 89(5): 052903-1-3.

[10]Yuan G L, Or S W, Liu J M, et al. Structural transformation and ferroelectromagnetic behavior in singlephase Bi 1-x NdxFeO3 multiferroic ceramics. Appl. Phys. Lett., 2006, 89(5): 052905-1-3.

[11]Shetty S, Palkar V R, Pinto R. Size effect study in magnetoelectric BiFeO3 system. Pramana J. Phys., 2002, 58(5/6): 1027-1030.

[12]Das N, Majumdar R, Sen A, et al. Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater. Lett., 2007, 61(10): 2100-2104.

[13]Farhadi S, Zaidi M. Bismuth ferrite (BiFeO3) nanopowder prepared by sucroseassisted combustionmethod: A novel and reusable heterogeneous catalyst for acetylation of amines,alcohols and phenols under solvent-free conditions. J. Mol. Catal. A: Chem., 2009, 299(1/2): 18-25.

[14]Wang Y, Xu G, Ren Z, et al. Low temperature polymer assisted hydrothermal synthesis of bismuth ferrite nanoparticles. Ceram. Int., 2008, 34(6): 1569-1571.

[15]何海英, 寇昕莉, 李建功. 钙钛矿型铋铁氧体纳米微粒的弱铁磁性. 过程工程学报, 2002, 2(4): 314-318.

[16]Park T J, Papaefthymiou G C, Viescas A J, et al. Sizedependent magnetic properties of singlecrystalline multiferroic BiFeO3 nanoparticles. Nano Lett., 2007, 7(3): 766-772.

[17]Gao F, Chen X, Yin K, et al. Visiblelight photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater., 2007, 19(19): 2889-2892.

[18]Xu J H, Ke H, Jia D C, et al. Lowtemperature synthesis of BiFeO3 nanopowders via a solgel method. J. Alloys Compd., 2009, 472(1/2): 473-477.

[19]Kumar M, Yadav K L, Varma G D. Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics. Mater. Lett., 2008, 62(8/9): 1159-1161.

[20]Briand G G, Burford N. Coordination complexes of bismuth (Ⅲ) involving organic ligands with pnictogen or chalcogen donors. Adv. Inorg. Chem., 2000, 50: 285-357.

[21]Stavila V, Gulea A, Shova S, et al. An unexpected influence of the nature of the amine on the crystal structure of some Co(Ⅲ)-Bi(Ⅲ) heterobimetallic complexes. Inorg. Chim. Acta, 2004, 357(7): 2060-2068.

[22]Sosnowska I, PeterlinNeumaier T, Streichele E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C, 1982, 15(23): 4835-4846.

[23]Das S R, Choudhary R N P, Bhattacharya P, et al. Structural and multiferroic properties of Lamodified BiFeO3 ceramics. J. Appl. Phys., 2007, 101(3): 034104-1-7.

Outlines

/