Research Paper

Influence of Doped Cu-Zn on Structure and Properties of TiN Films

  • WEI Chun-Bei ,
  • GONG Chun-Zhi ,
  • TIAN Xiu-Bo ,
  • YANG Shi-Qin
Expand
  • (State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Received date: 2009-03-03

  Revised date: 2009-04-15

  Online published: 2010-04-22

Abstract

Cu-Zn doped TiN films were fabricated on stainless steel by hybrid magnetron sputtering. Influences of Cu and Zn concentration on structure and properties (such as microhardness, wear resistance and corrosion resistance) of the films were investigated. The results indicate that growth of TiN grains is blocked by doped Cu and Zn and TiN grain size decreases with increasing Cu and Zn concentration. In contrast, high Cu and Zn content induces coarse structure due to the growth of copper grains. With Cu≤10.38at% and Zn≤2.19at%, the films show a preferred TiN(111) texture orientation, and TiN(200) orientation enhances with increasing the doped element content. XPS results show that the films are mainly composed of TiN and pure Cu. The composite film with co-doping 10.38at% Cu and 2.19at% Zn exhibits higher microhardness and wear resistance. The passivation potential is substantially improved with small amount of Cu-Zn although the corrosion resistance of the films decreases with increasing Cu and Zn concentration.

Cite this article

WEI Chun-Bei , GONG Chun-Zhi , TIAN Xiu-Bo , YANG Shi-Qin . Influence of Doped Cu-Zn on Structure and Properties of TiN Films[J]. Journal of Inorganic Materials, 2009 , 24(6) : 1231 -1235 . DOI: 10.3724/SP.J.1077.2009.01231

References

[1]范秋林, 赵红雨, 宋力昕, 等(FAN Qiu-Lin, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19(5): 1080-1086.
[2]Hsieh J H, Cheng M K, Li C, et at. Thin Solid Films, 2008, 516(16): 5430-5434.
[3]Zeman P, C^erstvy R, Mayrhofer P H, et al. Mater. Sci. Eng. A, 2000, 289(1/2): 189-197.
[4]Tseng C C, Hsieh J H, Wu W, et al. Thin Solid Films, 2008, 516(16): 5424-5429.
[5]ztürk A, Ezirmik K V, Kazmanll K, et al. Tribol Int., 2008, 41(1): 49-59.
[6]Kuo Y C, Lee J W, Wang C J, et al. Surf. Coat. Technol., 2007, 202(4-7): 854-860.
[7]Jones M I, McColl I R, Grant D M. Surf. Coat. Technol., 2000, 132(2/3): 143-151.
[8]万国江, 黄 楠, 冷永祥, 等(WAN Guo-Jiang, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18(4): 904-910.
[9]Andreasen K P, Jensen T, Petersen J H, et al. Surf. Coat. Technol., 2004, 182(2/3): 268-275.
[10]Myung H S, Han J G, Boo J H. Surf. Coat. Technol., 2004, 177-178: 404-408.
[11]穆静静, 王从曾, 马 捷, 等. 热加工工艺, 2008, 37(8): 15-17.
[12] Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-Ray photoelectron spectroscopy, 2nd edition. USA: Perkin-Elmer Corporation, 1992.
[13]Li Z G, Miyake S, Kumagai M, et al. Surf. Coat. Technol., 2004, 183(1): 62-68.
[14]Chen C T, Song Y C, Yu G P, et al. J. Mater. Eng. Perform, 1998, 7(3): 324-328.
[15]Chou W J, Yu G P, Huang J H. Surf. Coat. Technol., 2001, 140(3): 206-214.
[16]Haseeb A S M A, Celis J P, Roos J R. Thin Solid Films, 2003, 444(1/2): 199-207.
Outlines

/