Research Paper

Fabrication of Low Density High Strength Porous Mullite Ceramics by
Tert-butyl Alcohol-based Gelcasting Process

  • ZHOU Li-Zhong ,
  • WANG Chang-An ,
  • LIU Wei-Yuan ,
  • HUANG Yong
Expand
  • (Department of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China)

Received date: 2009-04-07

  Revised date: 2009-05-14

  Online published: 2010-04-22

Abstract

Porous mullite ceramics with low density and high strength were fabricated by TBA-based gelcasting process using tert-butyl alcohol (TBA) as shaping solvent. The pores of porous mullite ceramics formed from the quickly evaporation of TBA during drying of green bodies. Uniformly distributed and interconnected pores were obtained. With increasing sintering temperature, the porosity, open porosity and specific surface area of porous mullite ceramics decrease from 77.8%, 76.0% and 10.39m2/g to 67.6%, 65.5% and 4.26m2/g, respectively, in contrast, the compressive strength significantly increases from 3.29MPa to 32.36MPa. The pore size is not significantly influenced by the sintering temperature. The pore size presents single peak distribution, and almost all pores are open. Air permeability is in accordance with the pore size. The reasons for high strength of porous mullite ceramics under high porosity are mainly due to the uniformly porous structure, small and relatively concentrated pore size, and the formation of sintering neck which shows a skeleton structure of particle bond in stereo-space.

Cite this article

ZHOU Li-Zhong , WANG Chang-An , LIU Wei-Yuan , HUANG Yong . Fabrication of Low Density High Strength Porous Mullite Ceramics by
Tert-butyl Alcohol-based Gelcasting Process[J]. Journal of Inorganic Materials, 2009
, 24(6) : 1173 -1177 . DOI: 10.3724/SP.J.1077.2009.01173

References

[1]Dong Y C, Juan D W, Feng X F, et al. Journal of Alloys and Compounds, 2008, 460(1/2): 651-657.
[2]Ding S Q, Zeng Y P, Jiang D L. J. Am. Ceram. Soc., 2007, 90(7): 2276-2279.
[3]Barea R, Osendi M I, Ferreira J M F, et al. Acta Mater., 2005, 53(11): 3313-3318.
[4]Miao X. Mater. Lett., 1999, 38(3):167-172.
[5]Barea R, Osendi M I, Miranzo P. J. Am. Ceram. Soc., 2005, 88(3): 777-779.
[6]Atsunori J, Satoshi T, Yasunari K. J. Ceram. Soc. Jpn., 1997, 105(1220): 356-360.
[7]Liu Y F, Liu X Q, Wei H, et al. Ceramics International, 2001, 27(1): 1-7.
[8]Hong C Q, Zhang X H, Han J C, et al. J. Mater. Sci., 2006, 41(15): 4790-4794.
[9]Senguttuvan T D, Kalsi H S, Sharda S K, et al. Materials Chemistry and Physics, 2001, 67(1/2/3): 146-150.
[10]Chen R F, Huang Y, Wang C A, et al. J. Am. Ceram. Soc., 2007, 90(11): 3424-3429.
[11]Ganesh I, Jana D C, Shaik S, et al. J. Am. Ceram. Soc., 2006, 89(10): 3056-3064.
[12]Guo D, Cai K, Li L T, et al. Ceramics International, 2003, 29(4): 403-406.
[13]Rice R W. J. Mater. Sci., 1993, 28(8): 2187-2190.
[14]She J H, Ohji T. Materials Chemistry and Physics, 2003, 80(3): 610-614.
[15]Zhu S M, Ding S Q, Xi H A, et al. Ceramics International, 2007, 33(1): 115-118.
[16]Atisivan R, Bose S, Bandyopadhyay A. J. Am. Ceram. Soc., 2001, 84(1): 221-223.
[17]Kim Y W. J. Am. Ceram. Soc., 2005, 88(12): 3311-3315.
[18]Li X M, Yin X W, Zhang L T, et al. Materials Science and Engineering A, 2009, 500(1/2): 63-69.
[19]Fukushima M, Zhou Y, Miyazaki H, et al. J. Am. Ceram. Soc., 2006, 89(5): 1523-1529.
[20]Ding S Q, Zeng Y P, Jiang D L. J. Mater. Sci., 2007, 42(17): 7171-7175.
[21]Dong Y C, Liu X Q, Ma Q L, et al. Journal of Membrane Science, 2006, 285(1/2): 173-181.
[22]Meng G Y, Wang H T, Zheng W J, et al. Mater. Lett., 2000, 45(3/4): 224-227.
Outlines

/