Research Paper

Morphology Evolution Mechanism of ZnO Quasi-One-Dimensional Nanostructures

  • SU Ying-Jie ,
  • ZHOU Ya-Jun ,
  • HUANG Li-Sheng ,
  • LIU Yun-Fei ,
  • SHI Shu-Zhe ,
  • LV Yi-Nong
Expand
  • (State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering and College of Science, Nanjing University of Technology, Nanjing 210009, China)

Received date: 2009-03-16

  Revised date: 2009-04-29

  Online published: 2010-04-22

Abstract

Controlled growth of ZnO quasi-one-dimensional nanostructures with different morphologies were accomplished by thermal oxidation of zinc vapor in a vapor deposition system. The products include uniform nanobelts with different growth directions, [011-0] and [21-1-0] orientated nanobelts with nano-teeth on one side, micro-scale comb-like nanobelts and faceted fibers with periodic junctions constructed by hexagonal prisms or octagonal prisms along [011-0] and [21-1-0] directions, and so on. The morphologies and the crystal structures were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with electron backscatter diffraction (EBSD), high-resolution transmission electron microscope (HRTEM) in details. The basic configurations constructed the multiple ZnO nanostructures were discovered, the formation mechanism and the morphology multiformity of ZnO crystals were analyzed. The evolution processes of these quasi-one-dimensional configurations were discussed based on the crystal growth mechanisms. It is found that the ZnO fibers with periodic junctions and the comb-like nanobelts have an identity of crystal structure with the nanobelts.

Cite this article

SU Ying-Jie , ZHOU Ya-Jun , HUANG Li-Sheng , LIU Yun-Fei , SHI Shu-Zhe , LV Yi-Nong . Morphology Evolution Mechanism of ZnO Quasi-One-Dimensional Nanostructures[J]. Journal of Inorganic Materials, 2009 , 24(6) : 1141 -1146 . DOI: 10.3724/SP.J.1077.2009.01141

References

[1]仲维卓, 华素坤. 晶体生长形态学. 北京: 科学出版社, 1999: 260-420.
[2]Wang Z L. Mater. Sci. Eng. R-Rep., 2009, 64(3): 33-71.
[3]Hu J Q, Bando Y, Golberg D. Journal of Materials Chemistry, 2009, 19(3): 330-343.
[4]Cademartiri L, Ozin G. Advanced Materials, 2009, 21(9): 1013-1020.
[5]江 浩, 胡俊青, 顾 锋, 等(JIANG Hao, et al). 无机材料学报(Journal of Inorganic Materials), 2009, 24(1): 69-72.
[6]Tian B, Kempa T J, Lieber C M. Chemical Society Reviews, 2009, 38(1): 16-24.
[7]Tian Z R, Voigt J A, Liu J, et al. Nature Materials, 2003(2): 821-826.
[8]Liao Z M, Xu J, Zhang J M, et al. Applied Physics Letters, 2008, 93(2): 023111-1-3.
[9]Yang R S, Qin Y, Dai L M, et al. Nature Nanotechnology, 2009, 4(1): 34-39.
[10]Timko B P, Cohen T, Yu G H, et al. Nano Letters, 2009, 9(2): 914-918.
[11]Li W J, Shi E W, Zhong W Z, et al. J. Crystal Growth,1999, 203(1): 186-196.
[12]Chen Y F, Wang R M, Zhang H Z, et al. Micron, 2004, 35(6):481-487.
[13]Kong X Y, Wang Z L. Nano Letters, 2003, 3(12): 1625-1631.
[14]黄礼胜. 一维纳米结构:生长与界面. 南京: 南京大学博士论文, 2007.
[15]施书哲, 徐 明, 黄礼胜,等. 电子显微学报, 2005, 24(3): 196-200.
[16]Wang Z L, Kong X Y, Zuo J M. Physics Review Letters, 2003, 91(18): 185502-1-4.
[17]Huang L S, Wright S, Yang S G, et al. J. Phys. Chem. B,2004, 108(52):19901-19903.
[18]Huang L S, Pu L, Shi Y, et al. Optics Express, 2005, 13(14): 5263-5269.
Outlines

/