Research Paper

Growth of PbS Crystals under a BSA Monolayer in the Presence of Kinetically Controlled Ammonia Diffusion

  • XIONG Hao-Yang ,
  • HU Bin-Bin ,
  • XUE Zhong-Hui ,
  • CAI Li ,
  • DAI Shu-Xi ,
  • DU Zu-Liang
Expand
  • (Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, China)

Received date: 2009-04-10

  Revised date: 2009-07-04

  Online published: 2010-01-24

Abstract

Using a BSA monolayer as organic template, single oriented PbS crystals were prepared at the gas-liquid interface in the presence of kinetically controlled ammonia diffusion to promote hydrolysis of thiacetamide in the precursor solution. The crystals were characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS), respectively. The results show that the crystals exhibit a regular square morphology and have a uniform size distribution. The crystals growing along the (200) plane have a single crystalline structure. The electrostatic interaction and the geometrical matching between the BSA molecules and Pb2+ ions are the main reason for the oriented growth along the (200) plane. This method provides a potential approach for growing inorganic crystals with special structural features.

Cite this article

XIONG Hao-Yang , HU Bin-Bin , XUE Zhong-Hui , CAI Li , DAI Shu-Xi , DU Zu-Liang . Growth of PbS Crystals under a BSA Monolayer in the Presence of Kinetically Controlled Ammonia Diffusion[J]. Journal of Inorganic Materials, 2010 , 25(1) : 63 -67 . DOI: 10.3724/SP.J.1077.2010.00063

References

[1]张 辉, 杨高强, 张仁刚,等(ZHANG Hui, et al).无机材料学报(Journal of Inorganic Materials), 2005, 20(6): 1337-1342.
[2]OUYANG J M. Journal of Synthetic Crystals, 2005, 34(3): 459-465.
[3]Zhao X K, Yang J, Mccormick L D, et al. J. Phys. Chem., 1992, 96(24): 9933-9939.
[4]Yang J P, Fendler J H. J. Phys. Chem., 1995, 99(15): 5505-5511.
[5]Wang C W, Liu H G, Bai X T, et al. Crystal Growth & Design, 2008, 8(8): 2660-2664.
[6]Hu B B, Xue Z H, Wang H W, et al. J. Mater. Chem., 2009, 19: 2373-2379.
[7]SánchezGonzález J, RuizGarcía J, Gálvez Ruiz M J. J. Colloid Interface Sci., 2003, 267(2): 286+293.
[8]Yang J P, Meldrum F C, Fendler J H. J. Phys. Chem., 1995, 99(15): 5500-5504.
[9]Noda Y, Masumoto K, Ohba S, et al. Acta Cryst. Section C, 1987, 43(8): 1443-1445.
[10]Shalvoy R B, Fisher G B, Stiles P J. Phys. Rev. B, 1977, 15(4): 1680-1697.
[11]Bertrand P A, Fleischauer P D. J. Vac. Sci. Technol., 1980, 17(6): 1309-1314.
[12]Mann S. Nature, 1988, 332: 119-124.
[13]贾秀玲, 薛中会, 胡彬彬, 等(JIA Xiu-Ling, et al). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24(104): 1615-1620.
[14]Lochhead M J, Letellier S R, Vogel V. J. Phys. Chem. B, 1997, 101(50): 10821-10827.
[15]Gotliv B A, Addadi L, Weiner S. Chem. Biochem., 2003, 4(6): 522-529.
[16]Auduc N, Ringenbach A, Stevenson I, et al. Langmuir, 1993, 9(12): 3567-3573.
[17]Xue Z H, Hu B B, Jia X L, et al. Mater. Chem. Phys., 2009, 114(1): 47-52.
[18]Di Masi E, Kwak S Y, Pichon B P, et al. Cryst. Eng. Comm., 2007, 9(12): 1192-1204.
[19]Popescu D C, Smulders M M J, Pichon B P, et al. J. Am. Chem. Soc., 2007, 129(45): 14058-14067.
[20]Ouyang J M, Deng S P. Dalton Trans., 2003, 2846-2851.
Outlines

/