Research Paper

Polymide/Fe3O4-carbonized Membranes for Gas Separation

  • ZHAO Xuan-Ying ,
  • WANG Tong-Hua ,
  • LI Lin ,
  • LIU Ying ,
  • CAO Yi-Ming
Expand
  • (1.Carbon Research Laboratory, State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, China; 2.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)

Received date: 2009-05-04

  Revised date: 2009-07-16

  Online published: 2010-01-24

Abstract

Novel functional carbon membranes for gas separation were designed and prepared by incorporating Fe3O4 nanoparticles into carbon membranes precursor polyimide. The assynthesized membranes were characterized by TEM, XRD and VSM. The effects of Fe3O4 addition and the final pyrolysis temperature on the gas permeability were investigated. The results show that Fe3O4 nanoparticles transformed into other phase morphologies are helpful to form the graphite-like layers during the pyrolysis process, which make the membrane with two types of carbon structure : amorphous carbon and graphite-like layers. All the functional carbon membranes exhibit magnetism. Single gas permeation test results show that the assynthesized membranes exhibit an outstanding molecular sieving capability together with high gas permeability. The gas permeability of H2 is 61 times higher than the pure carbon membrane and the H2/CO2 selectivity is also improved. Fe3O4 addition and the final pyrolysis temperature siginificantly impair the gas permeability. When the Fe3O4 content is 20wt%, the permeabilities of pure gas H2, CO2, O2, N2, CH4 in the functional carbon membrane are 15476, 4385, 1565, 193 and 114 Barrers (1Barrer=1×10-10 cm3 (STP) ·cm/(cm2·s·cmHg)), respecticvely. The final pyrolysis temperature also has a remarkable effect on the gas separation performance.

Cite this article

ZHAO Xuan-Ying , WANG Tong-Hua , LI Lin , LIU Ying , CAO Yi-Ming . Polymide/Fe3O4-carbonized Membranes for Gas Separation[J]. Journal of Inorganic Materials, 2010 , 25(1) : 47 -52 . DOI: 10.3724/SP.J.1077.2010.00047

References

[1]Ismail A F, David L I B. J. Membr. Sci., 2001, 193(1): 1-18.
[2]Saufi S M, Ismail A F. Carbon, 2004, 42(2): 241-259.
[3]朱桂茹, 王同华, 李家刚. 炭素技术, 2002, 121(4): 22-27.
[4]Robeson L M. J. Membr. Sci., 1991, 62(2):165-185.
[5]Shiflett M B, Foley H C. Science, 1999, 285(5435): 1902-1905.
[6]Sedigh M G, Ohstot W J, Xu L, et al. J. Phys. Chem. A, 1998, 102(44): 8580-8589.
[7]Foley H C. Microporous Materials, 1995, 4(6): 407-433.
[8]Steel K M, Koros W J. Carbon, 2003, 41(2):253-266.
[9]Tin P S, Xiao Y, Chung T. Seperation & Purification Reviews, 2006, 35(4): 285-318.
[10]Yoda S, Hasegawa A, Suda H, et al. Chem. Mater., 2004, 16(2): 2363-2368.
[11]刘庆岭, 王同华, 张治国, 等.功能材料, 2007, 38(A07):2502-2505.
[12]Liu Q L, Wang T H, Liang C H, et al. Chem. Mater., 2006, 18(26): 6283-6288.
[13] Zhang B, Wang T H, Liu S L, et al. Microporous and Mesoporous Materials, 2006, 96(1/2/3): 79-83.
[14]Liu Q L, Wang T H, Qiu J S, et al. Chem. Commun., 2006, (11): 1230-1232.
[15]Zhang B, Wang T H, Zhang S H, et al. Carbon, 2006, 44(3): 2764-2769.
[16]Brubaker D W, Kammermeyer K. Annal. Chem.,1953, 25(3): 424-426.
[17]牛新书, 徐 荭, 王新军.功能材料与器件学报, 2008, 28(4): 91-96.
[18]Oka H, Inagaki M, Kaburagi Y, et al. Solid State Ionics, 1999, 121(1-4): 157-163.
[19]Bird A J, Trimm D L. Carbon, 1983, 21(3):177-180.
[20]Centeno T A, Vilas J L, Fuertes A B. J. Membr. Sci., 2004, 228(1): 45-54.
[21]Hatori H, Yamada Y, Shiraishi M. Carbon, 1992, 30(2): 303-306.
[22]Xiao Y, Chung T S, Chng M L, et al. J. Phys. Chem. B., 2005, 109(40): 18741-18748.
[23]Kita H, Yoshino M, Tanaka K, et al. Chem. Commun., 1997, 38(11): 1051-1052.
[24]Lie J A, Hgg M B. Carbon, 2005, 43(12): 2600-2607.
Outlines

/