A superhydrophobic CaCO3/SiO2 composite surface coating, with a very high water contact angle (WCA) of 169° and a small sliding angle (SA) of 2°, was prepared by means of self-assembly function of polydimethylsilioxane (PDMS). Dual-size surface roughness, which mimicked the surface topology of the lotus leaf, was originated from well-defined CaCO3/SiO2 raspberry-like particles which were prepared by violent stirring and surface modification. The coating surface morphologies were observed with scanning electron microscope. Roughness and WCA were measured with atom force microscope and WCA tester, respectively. It is found that there are many microconvexities with binary structure uniformly distributed on the surface lower of the film with diameter of about 2 to 3μm and nanoconvexities or submicroconvexities on the atop surface layer of the coating with diameter of about 200nm, and the surface microstructure is similar to that of lotus surface. Relationships between the surface microstructure, roughness and the wettability of the surface coating are discussed. The possible reason for the excellent superhydrophobic properties on the coating surface is due to co-effect of forming an appropriate surface roughness with well-defined composite particles and the low surface energy of PDMS.
YANG Jin-Xin
,
WEN Xiu-Fang
,
PI Pi-Hui
,
ZHENG Da-Feng
,
CHENG Jiang
,
YANG Zhuo-Ru
. Study on Morphology and Hydrophobicity of CaCO3/SiO2 Composite Surface Coating
[J]. Journal of Inorganic Materials, 2009
, 24(1)
: 91
-96
.
DOI: 10.3724/SP.J.1077.2009.00091
[1]Barthlott W, Neinhuis C. Planta, 1997, 202 (1): 1-8.
[2]Neinhuis C, Barthlott W. Annals of Botany, 1997, 79 (6): 667-677.[3]Sun T L, Lin F, Jiang L. Acc. Chem. Res., 2005, 38(8): 644-652.
[4]Murase H, Fujibayashi T. Prog. Org. Coatings, 1997, 31(1-2): 97-104.[5]Nishino T, Meguro M, Nakamae K. Langmuir, 1999, 15(13): 4321-4323.
[6]Kijlstra J, Reihs K, Klamt A. Colloids and Surface A, 2002, 206 (1-3): 521-529.
[7]Wenzel RN. J. Phys. Chem. 1949; 53(9): 1466-1467.
[8]Youngblood J P, McCarthy T. J. Macromolecules, 1999, 32(20): 6800-6806.
[9]Feng L, Li S H, Li Y S, et al. Adv. Mater., 2002, 14(24): 1857-1860.
[10]Li H J, Wang X, Feng L,et al. Angew.Chem., Int. Ed., 2001, 40(9): 1743-1746.
[11]Eiji H, Shinobu F, Itaru H. J. Am. Chem. Soc., 2005,127(39): 13458-13459.
[12]Feng X J, Feng L, Jin MH, et al. J. Am. Chem. Soc., 2004,126(1): 62-63.
[13]Ma ML, Mao Y, Rutledge G C, et al. Macromolecules, 2005, 38(23):9742-9748.
[14]Morra M, Occhiello E, Garbassi F. Langmuir, 1989, 5(3): 872-876.
[15]Morra M, Occhiello E, Garbassi F. J. Colloid Interface Sci., 1989, 132 (2): 504-508.
[16]Erbil H Y, Demirel A L, Avci Y, et al. Science, 2003, 299(28): 1377-1380.
[17]Wu X D, Zheng L J, Wu D. Langmuir, 2005, 21(7): 2665-2667.
[18]李凤生,杨 毅.纳米/微米复合技术及应用.北京:国防工业出版社,2002:15-41.[19]曲爱兰,文秀芳,皮丕辉,等(QU Ai-Lan, et al).无机材料学报(Journal of Inorganic Materials),2008,23(2):373-378.
[20]Jouko P, Mikael J, Sami A, et al. Langmuir, 2004,20(22): 9428-9431.[21]Cassie A B D, Baxter S. Trans. Faraday Soc., 1944,40:546-551.