Research Paper

Study on Synthesis in situ and Photocatalytic Activity of TiO2 Nanotubes Array Films

  • CUI Yun-Tao ,
  • WANG Jin-Shu ,
  • LI Hong-Yi ,
  • WANG Zhen-Zhen
Expand
  • Key Laboratory of new functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China

Received date: 2008-01-03

  Revised date: 2008-03-19

  Online published: 2008-11-20

Abstract

The highly ordered aligned titania nanotubes thin films were successfully prepared by liquid phase deposition (LPD) method. Anodic aluminum oxide (AAO) used as starting material was immersed in an aqueous ammonium hexafluorotitanate ((NH4)2TiF6) solution. The results show that anatase titania can be obtained after the thin films are annealed at 400℃ for 4h. The outside diameter of the titania nanotube is about 150nm and the wall thickness of the nanotubes is approximately 25nm. Moreover, the thickness of titania nanotube array is about 5μm. The annealed TiO2 thin films have good photocatalytic activity on the degradation of methyl blue, i.e., methyl blue can be entirely degradated after 120nm mercury arc irradiation.

Cite this article

CUI Yun-Tao , WANG Jin-Shu , LI Hong-Yi , WANG Zhen-Zhen . Study on Synthesis in situ and Photocatalytic Activity of TiO2 Nanotubes Array Films[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1259 -1262 . DOI: 10.3724/SP.J.1077.2008.01259

References

[1] Fujishima A, Honda K. Nature, 1972, 238 (5358): 37-38.
[2] Michael R Hoffmann, Scot T Martin, Wonyong Choi, et al. Chem. Rev., 1995, 95 (1): 69-96.
[3] Amy L Linsebigler, Guangquan Lu, John T Yates, et al. Chem. Rev., 1995, 95 (3): 735-758.
[4] O’Regan B, Gratzel M. Nature, 1991, (353): 737-740.
[5] Nagayama H, Honda H, Kawahara H. Electro-chem. Soc., 1988, 135 (8): 2013-2016.
[6] 王金淑, 邢朋飞, 李莉莉, 等. 北京工业大学学报, 2006, 32 (7): 633-637.
[7] 李洪义, 白新德, 凌云汉, 等. 稀有金属材料与工程, 2007, 36 (7): 1257-1259.
[8] Masuda H, Satoh M. J. Appl. Phys., 1996, 35 (1B): 126-129.
[9] Cepak V M, Martin C R. Chem. Mater., 1999, 11 (5): 1363-1367.
[10] Shinsuke Y, Tsuyoshi H, et al. J. Alloys Comp., 2004, 373 (1-2): 312-315.
[11] Hiroki I, Yuko T, et al. J. Mater. Chem., 1999, 9 (12): 2971-2972.
[12] 余萍, 陈善华. 广东微量元素科学, 2006, 13 (3): 12-16.
[13] 蒋武峰, 凌云汉, 白新德, 等. 稀有金属材料与工程, 2007, 36 (7): 1178-1180.
[14] Masuda Y, Saito N, et al. Science and Technology of Advanced Materials, 2003, 4 (5): 461-467.
[15] Zhang J, Yang C, et al. Materials Chemistry and Physics, 2004, 88 (2-3): 398-403.
[16] Cheng L F, Zhang X T, Liu B. Nanotechnology, 2005, 16: 1341-1345.
Outlines

/