A novel method, involving high temperature gas-solid hydrolysis, was proposed for the preparation of micro-Co3O4 powder. The effects of reaction temperature, crystal water content of CoCl2, the addition of inert dispersate on the product were investigated. The composition,morphology, and particle size of the prepared particle are characterized by X-ray diffraction(XRD), Scanning electronmicroscope(SEM) and Laser particle size analysis. The results indicate that the obtained powder with octahedral crystal structure are surrounded by {111} crystal surfaces. And the size ranges from submicron to micron, the particle size increases with the temperature elevating, the size distribution becomes narrow when CoCl2·2H2O is employed as precursor. The addition of inert dispersate is beneficial to the monodispersity of the obtained powder. The reasons for the formation of octahedral crystal morphology and the influencing factors of the particle size and morphology are also discussed.
LIU Zhi-Hong
,
HU Lei
,
LIU Zhi-Yong
,
LI Qi-Hou
. Synthesis of Microsized Co3O4 Octahedral by High Temperature Gas-solid Hydrolysis[J]. Journal of Inorganic Materials, 2008
, 23(6)
: 1205
-1210
.
DOI: 10.3724/SP.J.1077.2008.01205
[1] Wang Y, Fu Z W, Qin Q Z. Thin Solid Films, 2003, 441 (1-2): 19-24.
[2] Liu H C, Shiowkang Yen. Journal of Powder Sources, 2007, 166 (2): 478-484.
[3] Xue L, Zhang C B, He H, et al. Environmental, 2007, 75 (3-4): 167-174.
[4] Liotta L F, Carlo G Di, Pantaleo G, et al. Catalysis Communications, 2007, 8 (3): 299-304.
[5] kulawik J, Szwagierczak D. Journal of the European Ceramic Society, 2007, 27 (5): 2281-2286.
[6] Gaponov A V, Glot A B, Ivon A I, et al. Materials Science and Engineering, 2007, 145 (1-3): 76-84.
[7] Zhao Z W, Guo Z P, Liu H K. Journal of Power Sources, 2005, 147 (1-2): 264-268.
[8] Kim Do Youp, Ju Seo Hee. Journal of Alloys and Compounds, 2006, 417 (1-2): 254-258.
[9] 杨玉英, 胡中爱, 尚秀丽, 等. 西北师范大学学报, 2005, 41 (2): 55-57.
[10] Ribas J, Escuer A, Serra M, et al. Thermochimica Acta, 1986, 102 (15): 125-135.
[11] Dieter Horn, Jens Rieger. Chem. Int. Ed., 2001, 40 (4): 4330-4361.
[12] Wang Z L. J. Phys. Chem. B, 2000, 104: 1153-1175.
[13] Ma X C, Zhang Z D, Li X B, et al. Journal of Solid State Chemistry, 2004, 177 (10): 3824-3829.
[14] Liu X M, Fu S Y, Xiao H M. Materials letters, 2006, 60 (24): 2979-2983.
[15] Hu C Q, Gao Z H, Yang X R, et al. Chemical Physics Letters, 2006, 429 (4-6): 513-517.
[16] Zhang H G, Zhu Q S, Wang Y, et al. Materials Letters, 2007, 61 (23-24): 4508-4511.
[17] Liu X M, Fu S Y, Xiao H M. Journal of Solid State Chemistry, 2007, 180 (2): 461-466.
[18] Cheng Y,Zheng Y H, Wang Y S, et al. Journal of Solid State Chemistry, 2005, 178 (7): 2394-2397.
[19] Zhang Y G, Liu Y, Fu S Q, et al. Materials Chemistry and Physics, 2007, 104 (1): 166-171.
[20] Lian Suoyuan, Wang Enbo, Gao Lei, et al. Materials Letters, 2006, 61 (18): 3893-3896.
[21] Zhao Z W, Guo Z P, Liu H K. Journal of Power Sources, 2005, 147 (1-2): 264-268.
[22] Ke X F, Cao J M, Zheng M B, et al. Materials Letters, 2007, 61 (18): 3901-3903.
[23] Sung Woo Oh, Hyun Joo Bang, Toung Chan Bae, et al. Journal of Power Sources, 2007, 173 (1): 502-509.