Research Paper

Equilibrium Prediction of the Role of Key Species in the Chemical Vapor Deposition of Silicon Carbide

  • LU Cui-Ying ,
  • CHENG Lai-Fei ,
  • ZHANG Li-Tong ,
  • XU Yong-Dong ,
  • ZHAO Chun-Nian
Expand
  • National Key Laboratory of Thermostructural Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2008-02-02

  Revised date: 2008-05-07

  Online published: 2008-11-20

Abstract

Based on Gibbs minimum free energy principle, homogeneous equilibrium calculations were focused by Factsage code for MTS/H2 mixture. An assessment was made to determine the key species to SiC deposition. The results indicate that SiCl2 and C2H2 may contribute to SiC deposition, and their formations are favored high temperature and low pressure. Most of silicon-containing and carbon-containing species are SiCl4 and CH4, at low temperature and high pressure. Other substances such as hydrocarbons, orgamosilicons and silane compounds are probably unimportant for deposition process because of their low concentrations and small surface reactive sticking coefficient. Silicon and carbon are formed independently, based on the fact that there are barely species containing Si--C and Si--Si in gas phase. The ratio of silicon and carbon in sample is determined by their kinetics, respectively.

Cite this article

LU Cui-Ying , CHENG Lai-Fei , ZHANG Li-Tong , XU Yong-Dong , ZHAO Chun-Nian . Equilibrium Prediction of the Role of Key Species in the Chemical Vapor Deposition of Silicon Carbide[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1189 -1192 . DOI: 10.3724/SP.J.1077.2008.01189

References

[1] Li Jinwang, Tian Jiemo, Dong Limin. J. Eur Ceram. Soc., 2000, 20 (11): 1853--1857.
[2] Suto S, Hu C W, Sato F, et al. Thin Solid Films, 2000, 369 (1-2): 265--268.
[3] 韩杰才. 宇航学报, 2001, 22 (6): 124--132.
[4] Schiavuta P, Cepek C, Sancrotti M, et al. Surf. Sci., 2000, 454/456(May): 827--831.
[5] Santonia A, Lancokb, Loretia S, et al. J. Cryst. Growth, 2003, 258 (3-4): 272--276.
[6] Whitmarsh C K, Interrante L V. U S Patent, 5153295.
[7] Besmann T M, Johnson M L. Proceedings of the 3rd international symp. on ceramic materials and components for engines (Ed: V. L. Tennery). American Ceramic Society, Westerville, OH 1988. 443--456.
[8] Kingon A I, Lutz L J, Davis R F. J. Am. Ceram. Soc., 1985, 66 (8): 558--566.
[9] Allendorf M D. J. Electrochem. Soc., 1993, 140 (3): 747--753.
[10] Allendorf M D, Melius C F. J. Phys. Chem., 1993, 97 (3): 720--728.
[11] Ivanova M L, Pletyushkin A A. Inorganic Materials, 1968, 4 (2): 957--963.
[12] Schlichting. Int. J. Powder Metall., 1980, 12 (3): 141--147.
[13] Ohshita Y, Ishitani A, Takada T. J. Cryst. Growth, 1991, 108 (3-4): 499--507.
[14] Ban V S, Gilbert S L. J. Electrochem. Soc., 1975, 122 (10): 1382--1388.
[15] Nishizawa J, Nihira H. J. Cryst. Growth, 1978, 45 (December): 82--89.
[16] Ge Yingbin, Gordon Mark S, Francine Battaglia, et al. J. Phys. Chem. A, 2007, 111 (8): 1462--1474.
[17] Ge Yingbin, Gordon Mark S, Francine Battaglia, et al. J. Phys. Chem. A, 2007, 111 (8): 1475--1486.
[18] Papasouliotis George D, Sotirchos Stratis V. Materials Research Society Symposium Proceedings, Phase and Surface Chemistry in Electionic Materials Proceedings, 1994, 334: 114--116.
[19] Loumagne F, Langlais F, Naslain R, et al. Thin Solid Films, 1995, 254 (1-2): 75--82.
[20] Allendorf M D, Outka D A. Proc. MRS Symp.,p363, B.M.Gallois, W.Y.Lee, and M.A.Pickering , Editors, MRS, Pittsburgh, PA(1995).
Outlines

/