Ablation property of the pierced C/C composite nozzle was investigated via fire testing by a combustion gas generator which simulated oxy-rich combustion environments of the liquid rocket engine. Ablation mechanisms of the pierced C/C composite nozzle and effects of the combustion gas parameters were discussed. The results show that the linear ablation rate at the throat of the composite nozzle is 0.055±0.029mm/s, and the mass ablation rate is 0.186kg/(m2 ·s). blation behavior of the pierced C/C composite nozzle is directly affected by the compositions, temperature, pressure and the velocity of combustion gases, which shows a non-uniform process. Ablation in the regions ranging from the downstream of the convergent section to the throat is the most severe. Ablation mechanisms of the pierced C/C composite nozzle are cooperation of thermo-chemical ablation and thermo-mechanical erosion. The former is primarily dependent on the combustion temperature and concentrations of H2O and CO2, while the latter is influenced by the pressure and velocity of the combustion gas.
CHEN Bo
,
ZHANG Li-Tong
,
CHENG Lai-Fei
,
LUAN Xin-Gang
. Ablation Characteristic of the Pierced C/C Composite Nozzle in a Combustion Gas Generator[J]. Journal of Inorganic Materials, 2008
, 23(6)
: 1159
-1164
.
DOI: 10.3724/SP.J.1077.2008.01159
[1] 苏君明. 新型炭材料, 1996, 11 (3): 18--23.
[2] 苏君明. 炭素科技, 2001, 11 (1): 6--11.
[3] 何洪庆, 王思民, 牛嵩高, 等. 固体火箭技术, 1993, 16 (3): 31--36.
[4] 李克智, 赵建国, 李爱军, 等. 材料科学与工艺, 2005, 13 (5): 449--451.
[5] 李宜敏, 张中钦, 张远君. 固体火箭发动机原理, 第一版. 北京: 北京航空航天大学出版社, 1991. 109--123.
[6] 郑亚, 陈军, 鞠玉涛, 等. 固体火箭发动机传热学, 第一版. 北京: 北京航空航天大学出版社, 2006. 111, 204.
[7] Sanford Gordon, Bonnie J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, NASA RP-1311. Cleveland, Ohio, USA. National Aeronautics and Space Administration, Lewis Research Center, 1994. 1--61.
[8] Sanford Gordon, Bonnie J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. User’s Manual and Program Description, NASA RP-1311-P2. Cleveland, Ohio, USA. National Aeronautics and Space Administration, Lewis Research Center, 1996. 1--178.
[9] Yves Maisonneuve. Aerospace Science and Technology, 1997, 1 (4): 277--289.
[10] Kenneth K Kuo, Keswani S T. Combustion Sci. Tech., 1985, 42 (3-4): 145--164.
[11] Ragini Acharya, Kenneth K Kuo. Effect of Chamber Pressure & Propellant Composition on Erosion Rate of Graphite Rocket Nozzle, AIAA Aerospace Sciences Meeting and Exhibit, 44th, Reno, Nevada, USA. 2006, AIAA 2006--363.
[12] 刘建军, 李铁虎, 郝志彪. 宇航材料工艺, 2005, 35 (1): 42--48.
[13] FLUENT Inc. FLUENT 6.1 User’s Guide.
[14] 何洪庆, 周旭. 推进技术, 1993, 14 (4): 36--41.
[15] (俄)A.A.希什科夫, c.л.帕宁, B.B.鲁缅采夫, 著; 关正西, 赵克熙, 译. 固体火箭发动机工作过程, 第一版. 北京: 中国宇航出版社, 2006, 170: 220--223.
[16] 黄海明, 杜善义, 吴林志, 等. 复合材料学报, 2001, 18 (3): 76--80.