Research Paper

Friction and Wear Resistance of Ti3SiC2-SiC Composites

  • ZHANG Jian-Feng ,
  • SHI Lu ,
  • WANG Lian-Jun ,
  • JIANG Wan ,
  • CHEN Li-Dong
Expand
  • 1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2008-01-15

  Revised date: 2008-04-29

  Online published: 2008-11-20

Abstract

Ti3SiC2-SiC composites were in situ fabricated by spark plasma sintering technique from the raw powders of Ti, Si, C and small amounts of Al. Pin-disk friction and wear tests were conducted on Ti3SiC2-SiC composites. Testing results indicate that the friction coefficients and wear rates decrease with the increasing SiC contents for the Ti3SiC2-SiC composites against hardened steel, which indicates that the addition of SiC improves the friction and wear resistance of Ti3SiC2-SiC composites. The friction coefficient of Ti3SiC2 is a relatively stable value ranging from 0.8 to 1.0, while that of Ti3SiC2-40vol% SiC composites displays minimum value of 0.5 at stable state. The wear rates decrease one order of magnitude for Ti3SiC2-40vol% SiC compared with monolithic Ti3SiC2. The improvement of the wear resistance of Ti3SiC2-SiC composites is due to the wear mechanism transition and good anti-oxidation of SiC.

Cite this article

ZHANG Jian-Feng , SHI Lu , WANG Lian-Jun , JIANG Wan , CHEN Li-Dong . Friction and Wear Resistance of Ti3SiC2-SiC Composites[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1147 -1150 . DOI: 10.3724/SP.J.1077.2008.01147

References

[1] Barsoum M W, El-Raghy T. J. Mater. Synth. Process, 1997, 5 (3): 197--216.
[2] Barsoum M W. Prog. Sol. State. Chem., 2000, 28 (1-4): 201--208.
[3] Zhang Y, Ding G P, Zhou Y C, et al. Mater. Lett., 2002, 55 (5): 285--289. [4] Ho-Duc L H, El-Raghy T, Barsoum M W. J. Alloys Compd., 2003, 350 (1-2): 303--312.
[5] Tong X H, Okano T, Ikeki T, Yano T. J. Mater. Sci., 1995, 30 (12): 3087--3090.
[6] Radhakrishnan R, Henager C H, Brimhall J L, et al. Script. Mater., 1996, 34 (12): 1809--1814.
[7] Li S B, Xie J X, Zhang L T, et al. Mater. Lett., 2003, 57 (20): 3048--3056. [8] Wan D T, Zhou Y C, Bao Y W, et al. Ceram. Inter., 2006, 32 (8): 883--890.
[9] Zhang J F, Wu T, Wang L J, Jiang W, et al. Comp. Sci. Technol., 2008, 68 (2): 499--505.
[10] 王从曾. 材料性能学. 北京: 北京工业大学出版社, 2004.
[11] Buckley D, Miyoshi K. Wear., 1984, 100 (1-3): 333--353.
[12] Sarkar D, Basu B, Cho S, et al. J. Am. Ceram. Soc., 2005, 88 (11): 3245--3248.
[13] Sarkar D, Kumar B, Basu B. J. Eur. Ceram. Soc., 2006, 26 (13): 2441--2452.
[14] Barsoum M, Ho-Duc L, Radovic, et al. J. Electrochem. Soc., 1997, 144 (7): 2508--2516.
[15] Zhang J F, Wang L J, Jiang W, et al. Comp. Sci. Technol., 2008, 68 (6): 1531--1538.
Outlines

/