Research Paper

Effect of Oxygen Pressure on the Growth Behavior and Optical Properties of ZnO Films

  • LIU Ming ,
  • WEI Wei ,
  • QU Sheng-Wei ,
  • GU Jian-Feng ,
  • MA Chun-Yu ,
  • ZHANG Qing-Yu
Expand
  • State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China

Received date: 2007-12-03

  Revised date: 2008-05-22

  Online published: 2008-11-20

Abstract

Using a reactive radio-frequent magnetron sputtering method, high c-axis oriented ZnO films were deposited on Si (001) and quartz substrates under various oxygen partial pressures with a total pressure of 0.3Pa. Atomic force microscope, X-ray diffraction, UV-Visible transmission spectroscope and photoluminescence (PL) were used to study the effect of oxygen pressure on the surface morphology and optical properties of ZnO films. It is found that the films have three different growth modes in the range of oxygen pressure from 0.04Pa to 0.23Pa. The critical pressures for the transition of film growth can be taken at 0.04--0.08Pa and 0.16--0.19Pa, respectively. When the oxygen pressure is lower than 0.16Pa, the film grown along +c axis. When the oxygen pressure exceeds 0.19Pa, grains along -c axis growth are dominant in the films. With the increase of oxygen pressure, the transmittance, refraction index, optical band gap, and PL intensity increase. At the oxygen pressure of 0.19Pa, the film has a narrowest PL spectrum with a full width at half maximum of 88 meV at room temperature.

Cite this article

LIU Ming , WEI Wei , QU Sheng-Wei , GU Jian-Feng , MA Chun-Yu , ZHANG Qing-Yu . Effect of Oxygen Pressure on the Growth Behavior and Optical Properties of ZnO Films[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1096 -1100 . DOI: 10.3724/SP.J.1077.2008.01096

References

[1] Stolt L, Hedstrom J, Kessler J, et al. Appl. Phys. Lett., 1993, 62 (6): 597--599.
[2] Wacogne B, Roe M P, Pattinson T J, et al. Appl. Phys. Lett., 1995, 67 (12): 1674--1676.
[3] Bagnall D M, Chen Y F, Zhu Z, et al. Appl. Phys. Lett., 1997, 70 (17): 2230--2232.
[4] Aoki T, Hatanaka Y, Look D C. Appl. Phys. Lett., 2000, 76 (22): 3257--3258. [5] Ryu Y R, Kim W J, White H W. J. Cryst. Growth, 2000, 19 (3): 419--425.
[6] Yu P, Tang Z K, Wong G K L, et al. Proceeding of the 23rd International
Conference on the Physics of semiconductors, Berlin, edited by M Scheffler and R Zimmermann (World Scientific, Singapore) 1996, 2: 1453.
[7] 孙成伟, 刘志文, 秦福文, 等. 物理学报, 2006, 55 (3): 1390--1397.
[8] 方泽波, 龚恒翔, 刘雪芹, 等. 物理学报, 2003, 52 (7): 1748--1751.
[9] 孙成伟, 刘志文, 张庆瑜. 物理学报, 2006, 55 (1): 430--436.
[10] Yu P, Tang Z K, Wong G K L, et al. J. Cryst. Growth, 1998, 184: 601--604. [11] Sun C W, Xin P, Liu Z W, et al. Appl. Phys. Lett., 2006, 88 (22): 221914--221916.
[12] Liu Z W, Sun C W, Gu J F, et al. Appl. Phys. Lett., 2006, 88 (25): 251911--251913.
[13] Iwata K, Fons P, Yamada A, et al. J. Cryst. Growth, 2000, 209 (2-3): 526--531.
[14] 唐鑫, 吕海峰, 马春雨, 等. 物理学报, 2008, 57 (2): 1066--1072.
[15] 刘明, 刘志文, 谷建峰, 等. 物理学报, 2008, 57 (2): 1133--1140.
[16] Ozgur U, Alivov Y I, Liu C, et al. J. Appl. Phys., 2005, 98 (4): 041301--041403.
[17] Sakurai K, Kanehiro M, Nakahara K, et al. J. Cryst. Growth, 2000, 209 (2-3): 522--525.
[18] Biscarini F, Samori P, Greco O, et al. Phys. Rev. Lett., 1997, 78 (12): 2389--2392.
[19] Lita A E, Sanchez J E. J. Appl. Phys., 1999, 85 (2): 876--882.
[20] Moustaghfir A, Tomasella E, Amor S, et al. Surf. Coat. Technol., 2003, 174-175: 193--196.
[21] Sun X W, Kwok H S. J. Appl. Phys., 1999, 86 (1): 408--411.
[22] Hamberg I, Granqvist C G, Berggren K F, et al. Phys. Rev. B, 1984, 30 (6): 3240--3249
Outlines

/