Research Paper

Low-temperature Cofiring Behavior of ZMT3/NZC Sandwich Structure Composites

  • LIU Xiang-Chun ,
  • TIAN Chang-Sheng
Expand
  • 1. Department of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; 2. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2008-01-07

  Revised date: 2008-03-24

  Online published: 2008-11-20

Abstract

A novel zero-shrinkage-difference technique was introduced to eliminate the camber or cracks in cofired composites without the degradation, A sandwich structure of (Zn0.7Mg0.3)TiO3(ZMT3) dielectric/(Ni0.8Zn0.12Cu0.12)Fe1.96O4(NZC) ferrite multilayer composite was designed and prepared by using tape-casted technique, with ZMT3 as interlayer, and NZC as top and bottom layers. The produced sandwich structure shows no camber and cracks after being co-sintered. The cofired samples exhibit good dielectric performance (εr=12, tanδ=9.84×10-4), and low firing characteristics (900℃). Due to their dielectric performance, low firing characteristics, and realizable co-firing compatibility, the sandwich structure of ZMT3 dielectric/NZC ferrite multilayer composite can serve as the promising medium materials in the multilayer LC filter.

Cite this article

LIU Xiang-Chun , TIAN Chang-Sheng . Low-temperature Cofiring Behavior of ZMT3/NZC Sandwich Structure Composites[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1287 -1292 . DOI: 10.3724/SP.J.1077.2008.01287

References

[1] 向勇, 谢道华. 电子元件与材料, 1999, 18 (4): 34-40.
[2] 岳振星, 李龙土, 周济, 等. 硅酸盐学报, 1999, 27 (6): 709-713.
[3] Chang C R, Jean J H. J. Am. Ceram. Soc., 1998, 81 (11): 2805-2814.
[4] John G, Borland P W. J. Am. Ceram. Soc., 1989, 72 (12): 2287-2291.
[5] 崔学民, 周\hspace*{.12cm济, 王悦辉, 等. 电子元件与材料, 2005, 24 (10): 50-55.
[6] 高峰. 西安: 西北工业大学博士学位论文, 2002.
[7] Gao F, Yang Z P, Hou Y D, et al. Journal of Materials Science, 2003, 38 (7): 1523-1528.
[8] Gao F, Yang Z P, Hou Y D, et al. Journal of Materials Science Letter, 2003, 21 (1): 15-19.
[9] Yamaguchi T, Irisawa Y, Hoshi K, et al. Digest of the international conference on ferrite, satellite conference in Tokyo, Japan, Sept 25, 2000.
[10] Hagymasi M, Roosen A, Karmazin R, et al. Journal of the European Ceramic Society, 2005, 25 (12): 2061-2064.
[11] Birol H, Maeder T, Jacq C, et al. Journal of the European Ceramic Society, 2005, 25 (12): 2065-2069.
[12] Scrantom C Q, Lawson J C. Technologies for Wireless Applications, 1999 IEEE MTT-S Symposium, 1999. 193-200.
[13] Wang M, Zhou J, Yue Z, et al. Materials Science and Engineering B, 2003, 99 (1-3): 262-265.
[14] Nishikawa H, Tasaki M, Nakatani S, et al. IEEE, Japan Int’l Electrics Manufacturing Technology Symposium, 1993. 238-241.
[15] Heydecke G, Butz F, Binder J R, et al. Dental Materials, 2007, 23 (7): 785-791.
[16] Kagata H, Saito R, Katsumura H. Journal of Electroceramics, 2004, 13 (1-3): 277-280.
[17] Tarlazzi A, Roncari E, Pinasco P, et al. Wear, 2000, 244 (1-2): 29-40.
[18] Ade M, Hauβelt J. Journal of the European Ceramic Society, 2003, 23 (11): 1979-1986.
[19] Hennige V D, Haubelt J, Ritzhaupt-Kleisslb H J, et al. Journal of the European Ceramic Society, 1999, 19 (16): 2901-2908.
[20] Holz D, Pagel S, Bowen C, et al. Journal of the European Ceramics Society, 1996, 16 (2): 255-260.
[21] 刘向春. 西安: 西北工业大学博士学位论文, 2007.
Outlines

/