Research Paper

Synthesis of Core/Shell Calcium Carbonate Peanut-like Assemblies in Polyacrylamide Aqueous Solution

  • JIANG Xi-Hua ,
  • ZHENG Ming-Bo ,
  • CHEN Hui-Qin ,
  • PAN Li-Jia ,
  • TAO Jie ,
  • CAO Jie-Ming
Expand
  • Nanomaterials Research Institute, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2008-03-10

  Revised date: 2008-05-03

  Online published: 2008-11-20

Abstract

Peanut-like CaCO3 assemblies with core-shell structure were obtained in polyacrylamide aqueous solution. The as-prepared products were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results indicate that the peanut-like CaCO3 assemblies has some hollows. The shell of the CaCO3 assemblies is composed of calcite rhombohedras, and the core of the CaCO3 assemblies is composed of rod-like aggregates which are assembled by small particles and the core has a radially outward growth structure. The radially outward structure of the core is explained by the fractal growth theory, and the formation of Core/Shell structure is explained by the Ostwald ripening theory.

Cite this article

JIANG Xi-Hua , ZHENG Ming-Bo , CHEN Hui-Qin , PAN Li-Jia , TAO Jie , CAO Jie-Ming . Synthesis of Core/Shell Calcium Carbonate Peanut-like Assemblies in Polyacrylamide Aqueous Solution[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1283 -1286 . DOI: 10.3724/SP.J.1077.2008.01283

References

[1] Mann S. Angew. Chem. Int. Ed, 2000, 39 (19): 3392-3406.
[2] 范杰, 余承, 忠屠波, 等. 高等学校化学学报, 2001, 22 (9): 1459-1461.
[3] Naka K, Chujo Y. Chem. Mater., 2001, 13 (10): 3245-3259.
[4] Kato T, Sugawara A, Hosoda N. Adv. Mater., 2002, 14 (12): 869-877.
[5] Carpenter E E, Sims J A, Wienmann J A, et al. J. Appl. Phys., 2000, 87 (9): 5615-5617.
[6] Davies R, Schurr G A, Meenan P, et al. Adv. Mater., 1998, 10 (15): 1264-1270.
[7] Zhong Z, Yin Y, Xia Y. Adv. Mater., 2000, 12 (3): 206-209.
[8] Kim S W, Kim M, Lee W Y. J. Am. Chem. Soc., 2002, 124 (26): 7642-7643.
[9] Yang Z, Niu Z, Lu Y. Angew. Chem. Int. Ed, 2003, 42 (17): 1943-1945.
[10] Braun P V, Stupp S I. Mater. Res. Bull., 1999, 34 (3): 463-469.
[11] Collins A M, Spickermann C, Mann S. J. Mater. Chem., 2003, 13 (5): 1112-1114.
[12] Deng S G, Cao J M, Feng J, et al. J. Phys. Chem. B, 2005, 109 (23): 11473-11477.
[13] Qi L, Li J, Ma J. Adv. Mater, 2002, 14 (4): 300-303.
[14] Cha J N, Stucky G D, Morse D E, et al. Nature, 2000, 403 (6767): 289-292. [15] Aizenberg J, Black A J, Whitesides G M. Nature, 1999, 398 (6727): 495-497.
[16] Kniep R, Busch S. Angew. Chem., Int. Ed. Engl., 1996, 35 (22): 2624-2626.
[17] Simon P, Zahn D, Lichte H, et al. Angew. Chem. Int. Ed, 2006, 45 (12): 1911-1915.
[18] 郭玉明, 张秀英, 蒋凯, 等. 化学学报, 2001, 59 (3): 755-762.
[19] Busch S, Dolhaine H, DuChesne A, et al. Eur. J. Inorg. Chem., 1999, 1999 (10): 1643-1653.
[20] Yu S H, Colfen H, Antonietti M. J. Phys. Chem. B, 2003, 107 (30): 7396-7405.
[21] Colfen H, Qi L. Chem. Eur. J., 2001, 7: 106-116.
Outlines

/