Research Paper

Performance of Mullite Matrix Microwave Absorber Coatings Fabricated by Plasma Spraying Technology

  • JIANG Li ,
  • YUAN Xiao-Jing ,
  • ZHA Bai-Lin ,
  • HOU Gen-Liang ,
  • WANG Han-Gong
Expand
  • 1. 501 Staff, The Second Artillery Engineering Institute, Xi’an 710025, China; 2. Material and Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China

Received date: 2007-12-28

  Revised date: 2008-03-21

  Online published: 2008-11-20

Abstract

The clusters of mullite matrix (steatite, carbon) composite absorber powders were produced by using spraying spheroid granulator, and the composite powders were used to fabricate composite microwave absorber coatings by plasma spraying technique. The results show that during the plasma spraying, the carbon is oxidized, and the steatite is decomposed to enstatite and quartz for the high temperature plasma gas. The experiments show that the mean adhesive strength of coatings decreases with the coating thickness increasing, which reaches 2MPa with thickness of 0.8mm. The crack extracted the coatings rupture surface with wavelet maximum module exists in the glass phase interface. For these coatings, with the coatings thickness increasing, the reflectivity coefficient transforms to low frequency; while with the complex permittivity of enstatite increasing, it decreases and transforms to high frequency. The reflectivity coefficients of the coatings with thickness of 0.8mm are all below -5dB in the frequency range from 15GHz to 18GHz.

Cite this article

JIANG Li , YUAN Xiao-Jing , ZHA Bai-Lin , HOU Gen-Liang , WANG Han-Gong . Performance of Mullite Matrix Microwave Absorber Coatings Fabricated by Plasma Spraying Technology[J]. Journal of Inorganic Materials, 2008 , 23(6) : 1272 -1276 . DOI: 10.3724/SP.J.1077.2008.01272

References

[1] 张华, 周万城, 罗发, 等. 西北工业大学学报, 2004, 22 (5): 618-621.
[2] Jeong Min-Chang, Oh Byeong-Yun, et al. Journal of Crystal Growth, 2004, 268: 149-154.
[3] Abbas S M, Chandra Mahesh, Verma A, et al. Composites: Part A, 2006, 37: 2148-2154.
[4] Colomban P. Materials Research Society, 1998, 13 (4): 803.
[5] 何显运, 张兴华, 童速玲, 等. 广东工业大学学报, 2003, 20 (1): 16-19.
[6] 罗发, 周万城, 焦桓, 等(LUO Fa, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (3): 580-584.
[7] 杨长胜, 程海峰, 李永清, 新技术新工艺, 2005, l4: 52-53.
[8] 杨盟, 刁训刚, 孙裔, 等. 功能材料与器件学报, 2006, 12 (5): 465-468.
[9] 毕云飞, 陶 冶, 等. 金属热处理, 2005, 30 (6): 9-12.
[10] Lech Pawlowski. The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons Ltd. Baffins Lane, Chichester, 1995. 137-147.
[11] Xue S, Lakaf Y, Gravelle D, et al. Thermal Spray 2007: Global Coating Solutions, Published by ASM International, Materials Park, Ohio, USA, 2007: 167-172.
[12] 周玉. 陶瓷材料学. 科学出版社, 2004. 25-30.
[13] 张富宽, 罗 发, 朱冬梅, 等. 航空学报, 2005, 26 (2): 250-253.
[14] 张金升, 张银燕, 等. 陶瓷材料显微结构与性能. 化学工业出版社, 2007. 213-218.
[15] 曲远方. 功能陶瓷的物理性能. 化学工业出版社, 2007. 312-319.
[16] 徐滨士. 表面工程与维修. 机械工业出版社, 1996. 281-282.
Outlines

/