Research Paper

Temperature Dependence of Luminescence and Decay Time of YAG:Ce Nanophosphor

  • ZHANG Kai ,
  • LIU He-Zhou ,
  • WU Ya-Ting ,
  • HU Wen-Bin
Expand
  • State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2007-12-07

  Revised date: 2008-01-25

  Online published: 2008-09-20

Abstract

Ce-doped Y3Al5O12(YAG:Ce) nanophosphor was synthesized by the co-precipitation method. X-ray powder diffraction (XRD), Scanning electron microscope (SEM) were used to characterize the powders. The temperature dependences of luminescence and decay time of YAG:Ce nanophosphor were investigated in the temperature range of 80-400K. The luminescence intensity decreases with the increase of temperature, which is caused by the increase of the non-radiative relaxation rate. The decay of YAG:Ce contains two exponential terms, the long component presents decay of Ce3+ in the body, the short component reflects decay of Ce3+ on the surface. The long component decreases with the increase of temperature, while the short component shows intricate behavior, which results from effect of surface.

Cite this article

ZHANG Kai , LIU He-Zhou , WU Ya-Ting , HU Wen-Bin . Temperature Dependence of Luminescence and Decay Time of YAG:Ce Nanophosphor[J]. Journal of Inorganic Materials, 2008 , 23(5) : 1045 -1048 . DOI: 10.3724/SP.J.1077.2008.01045

References

[1] Haranath D, Chander H, Sharma P, et al. Appl. Phys. Lett., 2006, 89 (17): 173118-1-3.
[2] Nakamura S, Mukai T, Senoh M. Appl. Phys. Lett., 1994, 64 (13): 1687-1689.
[3] Andrievski R A. J. Mater. Sci., 1994, 29 (3): 614-631.
[4] Ludziejewski T, Noszynski M, Kapusta M, et al. Nucl. Instrum. Methods Phys. Res. Sect. A, 1997, 398 (2-3): 287-294.
[5] Zych E, Brecher C, Wojtowicz A, et al. J. Lumin., 1997, 75 (3): 193-203.
[6] 陈积阳, 施 鹰, 施剑林(CHEN Ji-Yang, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (6): 1260-1266.
[7] 王宏志, 高 濂(WANG Hong-Zhi, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16 (4): 630-634.
[8] Apte P, Burke H, Pickup H. J. Mater. Res., 1992, 7 (3): 706-711.
[9] Abell J S, Harris I R, Cockayne B, et al. J. Mater. Sci., 1974, 9 (4): 527-537.
[10] 刘如熹, 石景仁. 中国稀土学报, 2002, 20 (6): 495-501.
[11] Blasse G, Grabmaier B C. Luminescent Materials, 1994, Berlin: Springer-Verlag. 45.
[12] Blasse G, Bril A. Appl. Phys. Lett., 1967, 11 (2): 53-55.
[13] Hamilton D S, Gayen S K, Pogatshnik G J, et al. Phys. Rev. B, 1989, 39: 8807-8815.
[14] Weber M J. Solid State Commun., 1973, 12 (7): 741-744.
[15] Guo H, Yin M, Dong N, et al. Appl. Surf. Sci., 2005, 243 (1-4): 245-250.
[16] Pidol L, Khan-Harari A, Viana B, et al. J. Phys. Condens. Matter, 2003, 15 (12): 2091-2102.
[17] 陈俊锋, 李 贇, 宋桂兰(CHEN Jun-Feng, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 25-29.
[18] Zych E, Brecher B. J. Alloys Compd., 2000, 300 (1-2): 495-499.
[19] Lempicki A, Bartram R H. J. Lumin., 1999, 81 (1): 13-20.
[20] Zych E, Brecher C, Glodo J. J. Phys. Condens. Matter., 2000, 12 (8): 1947-1958.
Outlines

/