Research Paper

Preparation and Magnetic Properties of Spinel-type Ferrite Fibres

  • XIANG Jun ,
  • SHEN Xiang-Qian ,
  • ZHU Yong-Wei
Expand
  • 1. School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China; 2. School of Mechanical and Electrical Engineering, Nanjing University of Aeronaustics and Astronaustics, Nanjing 210016, China

Received date: 2007-10-22

  Revised date: 2007-12-25

  Online published: 2008-09-20

Abstract

The spinel-type MeFe2O4(Me=Zn,Ni0.5Zn0.5, Ni0.4Zn0.4Cu0.2) ferrite fibres with diameters of 0.5-20.0μm and high aspect ratio (length/diameter) were successfully prepared by the organic gel-thermal decomposition process using metal salts and citric acid as raw materials. The structure, thermal decomposition process and morphologies of the gel precursors and the fibres derived from thermal decomposition of these precursors were characterized by FT-IR, XRD, TG-DSC and SEM, and the electromagnetic performance of ferrite fibers were measured by VSM. The results show that linear-type structural molecules for the gel precursor is formed by a single dentate liganding type or bidentate-chelating mode among citric acid and metal ions during the complexation reaction, and the gel composed of these linear-type molecules exhibits a good spinning performance. The MeFe2O4(Me=Zn, Ni0.5Zn0.5, Ni0.4Zn0.4Cu0.2) ferrite fibres all exhibit a soft magnetic performance, and chemical composition, grain size and morphology have considerable influence on the magnetic properties of these ferrite fibres. The saturation magnetization(M s) of ZnFe2O4, Ni0.5Zn0.5Fe2O4 and Ni0.4Zn0.4Cu0.2Fe2O4 fibres are 2.6, 12.7 and 40.0A·m2·kg-1, and coercivity of these fibres correspondingly are 4.77, 5.82 and 4.04kA·m-1, respectively.

Cite this article

XIANG Jun , SHEN Xiang-Qian , ZHU Yong-Wei . Preparation and Magnetic Properties of Spinel-type Ferrite Fibres[J]. Journal of Inorganic Materials, 2008 , 23(5) : 1005 -1010 . DOI: 10.3724/SP.J.1077.2008.01005

References

[1] 邢丽英. 隐身材料. 北京: 化学工业出版社, 2004.
[2] 刘 辉, 魏雨. 功能材料, 2000, 31 (2): 124-126.
[3] 钟海胜, 李 强, 张一玲,等(ZHONG Hai-Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (6): 1477-1481.
[4] 刘 银, 丘 泰(LIU Yin, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (3): 391-391.
[5] Allwood D A, Xiong G, Cooke M D, et al. Science, 2002, 296 (5575): 2003-2006.
[6] Martín J I, Nogués J, Liu K, et al. J. Magn. Magn. Mater., 2003, 256 (1-3): 449-501.
[7] Fert A, Piraux L. J. Magn. Magn. Mater., 1999, 200 (1-3): 338-358.
[8] Pullar R C, Taylor S M D, Bhattacharya A K. J. Euro. Ceram. Soc., 2002, 22 (12): 2039-2045.
[9] Pullar R C, Appleton S A, bhattacharya A K. J. Mater. Sci., 2001, 36 (19): 4805-4812.
[10] Pullar R C. J. Magn. Magn. Mater., 2006, 300 (2): 490-499.
[11] Li D, Herricks T, Xia Y N. App. Phys. Lett., 2003, 83 (22): 4586-4588.
[12] Zhan S H,Gong C R,Chen D R, et al. J. Disper. Sci. Tech., 2006, 27 (7): 931-933.
[13] 翟学良, 胡亚伟, 刘伟华. 无机盐工业, 2006, 38 (5): 7-10.
[14] 张春野, 沈湘黔, 景茂祥, 等. 稀有金属材料与工程, 2006, 35 (9): 1470-1474.
[15] Zhang C Y, Shen X Q, Zhou J X, et al. J. Sol-Gol Sci. Techn., 2007, 42 (1): 95-100.
[16] 沈德言. 红外光谱法在高分子研究中的应用. 北京: 科学出版社, 1982.
[17] Nakamoto K. 无机和配位化合物的红外和拉曼光谱.黄德如, 汪仁庆译. 北京: 化学出版社, 1986.
[18] Strathmann T J, Myneni Satish C B. Geochim. Cosmochim. Acta, 2004, 68 (17): 3441-3458.
[19] Joy P A, Anantharaman M R. J. Magn. Magn. Mater., 2004, 269 (2): 217-226.
[20] 陆 胜, 刘仲娥. 硅酸盐学报, 2005, 33 (6): 665-668.
Outlines

/