Carbon aerogel (CA)-SiO with excellent lithium insertion-extraction property could be prepared through ball-milling of carbon aerogel (CA) with SiO. Effects of ball-milling process including ball-milling time and ball-milling speed on structure and electrochemical property of CA-SiO composite were investigated. The results show that ball-milling of amorphous SiO with CA can crystallize Si with small particle size, the crystal size of Si increases with the extension of ball-milling time and the increase of ball-milling speed, and then decreases. The crystallization of Si can be improved by the extension of ball-milling time and the increase of ball-milling speed. However, ball-milling for too long time or at too high speed will result in transformation of crystal Si to amorphous. Little influence of ball-milling time and ball-milling speed is found on crystal size of C in the prepared CA-SiO, though ball-milling leads to some increase of C crystal size. CA-SiO has higher capacity and better cycling stability when the silicon within this material shows higher crystallization and smaller crystal size. In contrast, amorphous Si is disadvantageous for lithium insertion-extraction in CA-SiO which will lead to poorer cycling stability. The ball-milling speed of 400r/min and the ball-milling time of 10h are the best preparation parameters for CA-SiO used as anode material of lithium-ion battery.
CHAO Ya-Jun
,
YUAN Xian-Xia
,
MA Zi-Feng
,
DENG Xiao-Yan
,
YU Wen-Li
. Effects of Ball-Milling on Structure and Electrochemical Property of CA-SiO Composite[J]. Journal of Inorganic Materials, 2008
, 23(5)
: 917
-922
.
DOI: 10.3724/SP.J.1077.2008.00917
[1] Pekala R W. Low density resorcinol-formaldehyde aerogels. US Patent, 4873218, 1989.
[2] Pekala R W. J. Mater. Sci., 1989, 24 (9): 3221--3227.
[3] Pekala R W, Farmer J C, Alviso C T, et al. J. Non-Cryst. Solids, 1998, 225 (1): 74--80.
[4] Yuan X, Chao Y J, Ma Z F, et al. Electrochem. Commun., 2007, 9 (10): 2591--2595.
[5] Lee K T, Lytle J C, Ergang N S, et al. Adv. Funct. Mater., 2005, 15 (4): 547--556.
[6] Jung Y S, Lee K T, Ryu J H, et al. J. Electrochem. Soc., 2005, 152 (7): A1452--A1457.
[7] Wang G X, Yang L, Bewlay S L, et al. J. Power Sources, 2005, 146 (1-2): 521--524.
[8] Chao Y J, Yuan X, Ma Z F. Electrochimica Acta., 2008, 53 (9): 3468--3473.
[9] 解德滨, 沈军, 秦仁喜, 等. 材料导报, 2005, 19 (5): 271--273.
[10] 夏三宇, 陈晓红, 宋怀河. 北京化工大学学报, 2006, 33 (2): 46--49.
[11] Hasegawa T, Mukai S R, Shirato Y, et al. Carbon, 2004, 42: 2573--2579.
[12] Wang G X, Ahn J H, Yao Jane, et al. Electrochem. Commun., 2004, 6 (7): 689--692.
[13] Kima J H, Sohna H J, Kimb H, et al. J. Power Sources, 2007, 170 (2): 456--459.
[14] Moritaz T, Takami N. J. Electrochem. Soc., 2006, 153 (2): A425--A430.
[15] Zhang T, Gao J, Zhang H P, et al. Electrochem. Commun., 2007, 9: 886--889.