Research Paper

Multiferroic Properties of (La0.2Bi0.8FeO3)0.8-(NiFe2O4)0.2 Films Grown by Pulse Laser Deposition

  • LI Xiang-Cheng ,
  • YANG Guang ,
  • DAI Neng-Li ,
  • CHEN Ai-Ping ,
  • LONG Hua ,
  • YAO Kai-Lun ,
  • LU Pei-Xiang
Expand
  • 1. Division of Laser Science and Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; 3. The Hubei Province Key Laboratory of Ceramics and Refractories, Wuhan University of Science and Techrology, Wuhan 430081, China

Received date: 2007-09-20

  Revised date: 2008-01-29

  Online published: 2008-09-20

Abstract

(La0.2Bi0.8FeO3)0.8-(NiFe2O4)0.2 (LBFO-NFO) thin films were grown on (100) SrTiO3 substrates by pulse laser deposition . X-ray diffraction and Field Emission Scanning Electronic Microgrape studies confirm that the phases of LBFO and NFO in the films grow along the direction of (100) and the particle sizes of the two phases are about 100--150nm, respectively. The ferroelectric and ferromagnetic hysteresis of the films measured with a standardized ferroelectric test system (RT- 66A, Radiant technologies) and vibrating sample magnetometer (VSM) show that the saturation polarization and magnetization are 7.6μC/cm2 and 4.12×104A/m respectively, which indicates that LBFO-NFO films possess multiferroic properties obviously. By controlling the growth condition of the films, the leakage current of LBFO-NFO films can be decreased. Accordingly, the ferroelectric and ferromagnetic properties can be enhanced greatly.

Cite this article

LI Xiang-Cheng , YANG Guang , DAI Neng-Li , CHEN Ai-Ping , LONG Hua , YAO Kai-Lun , LU Pei-Xiang . Multiferroic Properties of (La0.2Bi0.8FeO3)0.8-(NiFe2O4)0.2 Films Grown by Pulse Laser Deposition[J]. Journal of Inorganic Materials, 2008 , 23(5) : 897 -901 . DOI: 10.3724/SP.J.1077.2008.00897

References

[1] Zheng H, Wang J, Lofland S E, et al. Science, 2004, 303 (5658): 661--663.
[2] Wang J, Neaton J B, Zheng H, et al. Science, 2003, 299 (5613): 1719--1722.
[3] Spaldin N A, Fiebig M. Science, 2005, 309 (5733): 391--392.
[4] Zhao T, Scholl A, Zavaliche F, et al. Nat. Mater., 2006, 5 (10): 823--829.
[5] Eerenstein W, Mathur N D, Scott J F. Nature, 2006, 442 (7104): 759--765.
[6] Hur N, Park S, Sharma P A, et al. Nature, 2004, 429 (6990): 392--395.
[7] Kimura T, Kawamoto S, Yamada I, et al. Phys. Rev. B, 2003, 67 (18): 180401--1--4.
[8] Nan C W, Cai N, Liu L, et al. J. Appl. Phys., 2003, 94 (9): 5930--5936.
[9] 周剑平, 施展, 刘刚, 等(ZHOU Jian-Ping, et al). 物理学报(Acta. Phys. Sin.), 2006, 55 (7): 3266--3269.
[10] Zavaliche F, Zhao T, Zheng H, et al. Nano Lett., 2007, 7 (6): 1586--1590.
[11] Liu M, Li X, Imrane H, et al. Appl. Phys. Lett., 2007, 90 (15): 152501--1--3. [12] Wang Y, Jiang Q H, He H C, et al. Appl. Phys. Lett., 2006, 88 (14): 142503--1--3.
[13] Singh S K, Kim Y K, Funakubo H, et al. Appl. Phys. Lett., 2006, 88 (16): 162904--1--3.
[14] Zavaliche F, Shafer P, Ramesh R. Appl. Phys. Lett., 2005, 87 (25): 252902--1--3.
[15] Das S R, Choudhary R N P, Bhattacharya P, et al. J. Appl. Phys., 2007, 101 (3): 034104--1--7.
[16] Chung F H. J. Appl. Cryst., 1974, 7 (6): 519--525.
[17] Béa H, Bibes M, Barthélémy A, et al. Appl. Phys. Lett., 2005, 87 (7): 072508--1--3.
[18] Zavaliche F, Das R R, Kim D M, et al. Appl. Phys. Lett., 2005, 87 (18): 182912--1--3.
[19] Lee Y H, Wu J M, Lai C H. Appl. Phys. Lett., 2006, 88 (4): 042903--1--3.
[20] Palkar V R, John J, Pinto R. Appl. Phys. Lett., 2002, 80 (9): 1628--1630.
[21] Ruette B, Zvyagin S, Pyatakov A P, et al. Phys. Rev. B, 2004, 69 (6): 064114--1--7.
[22] Luders U, Bibes M, Bobo J F, et al. Phys. Rev. B, 2005, 71 (13): 134419--1--7.
[23] Li X C, Rong Z G, Feng Z K, et al. J. Am. Ceram. Soc., 2006, 89 (4): 1450--1452.
[24] Naganuma H, Okamura S. J. Appl. Phys., 2007, 101 (9): 09M103--1--3.
Outlines

/