Research Paper

Effects of V5+ Substitution on the Dielectric Properties of Mg(SbNb1-xV xO9 Ceramics

  • YAO Guo-Guang ,
  • LIU Peng
Expand
  • 1. Department of Applied Mathematics and Physics, Xian Institute of Posts and Telecommunications, Xi’an 710021, China; 2. College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China

Received date: 2007-12-03

  Revised date: 2008-01-18

  Online published: 2008-09-20

Abstract

The effects of V5+ substitution on the sintering characters, microstructure and microwave dielectric properties of Mg4(SbNb1-xVxO9 ceramics were investigated. Results show that a small amount of V5+ substitution for Nb5+ can lower the sintering temperature of Mg4(Nb2-xSbx)O9 drastically. In all composition range investigated, the sintered ceramics show single phase with corundum structure. With increasing of V5+ content, the dielectric constant (ε) and quality factor (Q·f) increase and thereafter decrease, respectively, the temperature coefficient of resonant frequencies τ f decreases which is due to the strengthened B site-bond valence caused by V5+ substitution. The ceramics with x=0.15 sintered at 1250℃ has a relative dielectric constant εr of 9.98, a quality factor Q·f value of 20248GHz (at 8GHz) and a temperature coefficient of resonant frequencies τ f value of --23.3×10-6K-1.

Cite this article

YAO Guo-Guang , LIU Peng . Effects of V5+ Substitution on the Dielectric Properties of Mg(SbNb1-xV xO9 Ceramics[J]. Journal of Inorganic Materials, 2008 , 23(5) : 877 -880 . DOI: 10.3724/SP.J.1077.2008.00877

References

[1] Li Y, Chen X M. J. Euro. Ceram. Soc., 2002, 22 (5): 715--719.
[2] Kim W S, Kim E S, Yoon K H. J. Am. Ceram. Soc., 1999, 82 (8): 2111--2115.
[3] 吕文中, 朱建华, Kipkoech E R(Lǔ Wen-Zhong, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (1): 139--144.
[4] 赵梅瑜, 王依琳. 电子元件与材料, 2005, 24 (12): 50--54.
[5] Kumada N, Taki K, Kinomura N. Mater. Res. Bull., 2000, 35 (7): 1017--1021.
[6] Yokoi A, Ogawa H, Kan A. J. Ceram. Soc. Jpn, 2004, 112: S1633--S1636(Supplement 112-1 PacRim 5 Special Issue).
[7] Liu P, Yao G G, Bian X B, et al. J. Electroceram., In press. (DOI: 10. 1007/s10832-007-9114-6).
[8] Lim S W, Bang J. J. Electroceram., In press (DOI: 10. 1007/s10832-007-9322-0).
[9] Hirotaka Ogawa, Akinori Kan, Soichi Ishihara. J. Euro. Ceram. Soc., 2003, 23 (14): 2485--2488.
[10] Kan A, Ogawa H. Mater. Res. Bull., 2006, 44 (6): 1178--1184.
[11] Yoshida A, Ogawa H, Kan A. J. Euro. Ceram. Soc., 2004, 24 (6): 1765--1768.
[12] Ogawa H, Taketani H, Kan A. J. Euro. Ceram. Soc., 2005, 25 (12): 2859--2863.
[13] Kan A, Ogawa H. Jpn. J. Appl. Phys., 2003, 42 (9B): 6154--6157.
[14] Fan X C, Chen X M. IEEE Trans. Microwave Theor. Tech, 2005, 53: 3130--3134.
[15] 吕孟凯. 固态化学. 济南: 山东大学出版社. 183--185.
[16] Bosman A J, Havinga E E. Phys. Rev., 1963, 129 (4): 1593--1600.
[17] Wee S H, Kim D W, Yoon S I. J. Am. Ceram. Soc., 2004, 87 (5): 871--874.
Outlines

/