Research Paper

Development of High-K Gate Dielectric Materials

  • WU De-Qi ,
  • ZHAO Hong-Sheng ,
  • YAO Jin-Cheng ,
  • ZHANG Dong-Yan ,
  • CHANG Ai-Min
Expand
  • 1. Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, China; 2. Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China; 3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2007-10-16

  Revised date: 2007-12-14

  Online published: 2008-09-20

Abstract


The traditional gate dielectric material of SiO2 can not satisfy the need of the continuous downscaling of CMOS dimensions. High-K gate dielectric materials have attracted extensive research efforts recently and obtained great progress. In this paper, the developments of high gate materials were reviewed. Based on the authors background and research work in the area, the latest achievements of high-K gate dielectric materials on the recrystalization temperature, the low-K interface layer, and the dielectric breakdown and metal gate electrode were introduced in detail.

Cite this article

WU De-Qi , ZHAO Hong-Sheng , YAO Jin-Cheng , ZHANG Dong-Yan , CHANG Ai-Min . Development of High-K Gate Dielectric Materials[J]. Journal of Inorganic Materials, 2008 , 23(5) : 865 -871 . DOI: 10.3724/SP.J.1077.2008.00865

References

[1] Chau R, Datta S, Doczy M, et al. IEEE Electron Device Lett., 2004, 25 (6): 408--410.
[2] Lo S H, Bushanan D A, Taur Y, et al. IEEE Electron Device Lett., 1997, 18 (5): 209--211.
[3] Jeong S H, Bae I S, Shin Y S, et al. Thin Solid Films, 2005, 475 (1-2): 354--358.
[4] Spiga S, Wiemer C, Tallarida G, et al. Mater. Sci. and Eng. B, 2004, 109 (1-3): 47--51.
[5] Wolfframma D, Ratzke M, Kappa M, et al. Mater. Sci. and Eng. B, 2004, 109 (1-3): 24--29.
[6] Legrand J, Lhostis S, Chang Y, et al. Microelec. Eng., 2004, 72 (1-4): 310--314.
[7] Liu C Y, Tseng T Y. J. Euro. Ceram. Soc., 2004, 24 (6): 1449--1453.
[8] Albertin K F, Pereyra I, Alayo M I. Materials Characterization. 2003, 50 (2-3): 149--154.
[9] Zhu J, Liu Z G, Zhu M, et al. Appl. Phys. A, 2005, 80 (2): 321--324.
[10] Kim M S, Ko Y D, Hong J H, et al. Appl. Surf. Sci., 2004, 227 (1-4): 387--398.
[11] Wallace R M. Appl. Surf. Sci., 2004, (231-232): 543--551.
[12] Kavalieros J, Doyle B, Datta S, et al. Tri-Gate transistor
architecture with high-k gate dielectrics, metal gates and strain engineering,
Symp. Honolulu, Hawaii. VLSI Tech., 2006. 62--63.
[13] Wallace R M, Wilk G. MRS Bull. 2002, 27 (3): 192--197.
[14] Sahiner M, Woicik J C, Gao P, et al. Thin Solid Films, 2007, 515 (16): 6548--6551.
[15] Hergenrother J M, Wilk G D, Nigam T, et al. (2001) in 50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics. Technical Digest of IEEE International Electron Device Meeting, Washington D.C., 2001, 3.1.1-3.1.4
[16] Sammelselg V, Rammula R, Aarik J, et al. Journal of Electron Spectroscopy and Related Phenomena, 2007, (156-158): 150--154.
[17] Ho M Y, Gong H, Wilk G D, et al. J. Appl. Phys., 2003, 93 (3): 1477--1481.
[18] Zhao X, Vanderbilt D. Phys. Rev. B, 2002, 65 (23): 233106--1--4.
[19] Jiang Y, Song H, Gao J, et al. J. Electrochem. Soc., 2005, 152 (7): C498--C503.
[20] Rauwel E, Dubourdieu C, Holl\ddot{ ander B, et al. Appl. Phys. Lett., 2006, 89 (1): 012902--1--3.
[21] Song S C, Zhang Z, Huffman C, et al. Thin Solid Films., 2006, 504 (1): 170--173.
[22] Zhu W J, Tamagawa T, Gibson M, et al. IEEE Electron Device Lett., 2002, 23 (11): 649--651.
[23] Zhao C, Richard O, Young E, et al. J. Non-Crystalline Solids, 2002, 303 (1): 144--149.
[24] Visokay M R, Chambers J J, Rotondaro A L P, et al. Appl. Phys. Lett., 2002, 80 (17): 3183--3185.
[25] Wong H, Iwai H. Microelectron. Eng., 2006, 83 (10): 1867--1904.
[26] Jeon S, Yang H, Park D G, et al. Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes \& Review Papers., 2002, 41 (4B): 2390--2393.
[27] Lu Y K, Zhu W, Chen X F, et al. Thin Solid Films, 2006, 504 (1-2): 188--191.
[28] Yu H Y, Wu N, Li M F, et al. Appl. Phys. Lett., 2002, 81 (19): 36l8--3620.
[29] Kang J F, Yu H Y, Ren C, et al. Appl. Phys. Lett., 2004, 84 (9): 1588--1590.
[30] Puthenkovilakam R, Sawkar M, Chang J P. Appl. Phys. Lett., 2005, 86 (20): 202902--1--3.
[31] Ogawa A, Iwamoto K, Ota H, et al. Microelec. Eng., 2007, 84 (9-10): 1861--1864.
[32] Mitchell D R G, Aidla A. Appl. Surf. Sci., 2006, 253 (2): 606--617.
[33] Zhu W J, Ma T P, Zafar S, et al. IEEE Electron Device Lett., 2002, 23 (10): 597--599.
[34] Narayanan V, Maitra K, Linder B P, et al. IEEE Electron Device Lett., 2006, 27 (7): 591--594.
[35] Guha S, Paruchuri V K, Copel M, et al. Appl. Phys. Lett., 2007, 90 (9): 092902--1--3.
[36] Alshareef H N, Quevedo-Lopez M, Wen H C, et al. Appl. Phys. Lett., 2006, 89 (23): 232103--1--3.
[37] 张邦维. 微纳电子技术, 2006, 3: 113--120.
[38] 张邦维. 微纳电子技术, 2006, 4: 161--166.
[39] Mcpherson J, Kim J Y, Shanware A, et al. Appl. Phys. Lett., 2003, 82 (13): 2l2l--2l23.
[40] Qi W J, Nieh R, Dharmarajan E, et al. Appl. Phys. Lett., 2000, 77 (11): 1704--1706.
[41] Filipescu M, Scarisoreanu N, Craciun V, et al. Appl. Sur. Sci., 2007, 253 (19): 8184--8191.
[42] Rittersma Z M, Loo J J G P, Ponomarev Y V, et al. J. Electrochem. Soc., 2004, 151 (12): G870--G877.
[43] Peterson J, Young C D, Barnett J, et al. Electrochem. Solid-State Lett, 2004, 7 (8): G164--G167.
[44] Sim J H, Wen H C, Lu J P, et al. IEEE Electron Device Lett., 2003, 24 (10): 631--633.
[45] Schaeffer J K, Samavedam S B, Gilmer D C, et al. J. Vac. Sci. Technol. B, 2003, 21 (1): 11--17.
[46] Pan J, Woo C, Yang C Y, et al. IEEE Electron Device Lett., 2003, 24 (5): 304--305.
[47] Yu H Y, Kang J F, Chi Ren, et al. Chinese Journal of Semiconductors, 2004, 25 (10): 1193--1204.
[48] 英特尔(Intel) 45nm CPU将于今年下半年量产, http://www.semi.org.cn/news/news-show.aspx?id=2796. 2007--12--18.
Outlines

/