Research Paper

Effects of Ni Coated Cordierite Catalyst on Flame Synthesis of Carbon Nanotubes

  • ZHOU Qiu-Ling ,
  • LI Chun-Zhong ,
  • GU Feng ,
  • WANG Lan-Juan
Expand
  • Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Received date: 2007-09-14

  Revised date: 2007-11-14

  Online published: 2008-07-20

Abstract

Catalyst particles coated uniformly on cordierite surface through dipping-method in nickel nitrate solution, were used to synthesize carbon nanotubes via methane diffusion flame method. Well-graphitized carbon nanotubes were synthesized with outer diameters of 30--50nm and length of tens of micron meter. The results show that diameters of carbon nanotubes are not affected by the size of particles on substrate surface, which increase with the concentration of dipping solution. When catalyst particles become denser with dipping time extending, the density of carbon nanotubes increases obviously with bound morphology. The catalytic mechanism is discussed in detail to propose the growth of carbon nanotubes and suggests the possible changes of particles during this process.

Cite this article

ZHOU Qiu-Ling , LI Chun-Zhong , GU Feng , WANG Lan-Juan . Effects of Ni Coated Cordierite Catalyst on Flame Synthesis of Carbon Nanotubes[J]. Journal of Inorganic Materials, 2008 , 23(4) : 805 -810 . DOI: 10.3724/SP.J.1077.2008.00805

References

[1] Iijima S. Nature, 1991, 354 (6348): 56--58.
[2] Salvetat-Delmotte J-P, Rubio A. Carbon, 2002, 40 (10): 1729--1734.
[3] Tsukagoshi K, Yoneya N, Uryu S, et al. Physica B, 2002, 323 (1-4): 107--114.
[4] Bonard J M, Croci M, Klinke C, et al. Carbon, 2002, 40 (10): 1715--1728.
[5] Becher M, Haluska M, Hirscher M, et al. Comptes Rendus Physique, 2003, 4 (9): 1055--1062.
[6] Ebbesen T W, Ajayan P M. Nature, 1992, 358 (6383): 220--222.
[7] Thess A, Lee R, Nikolaev P, et al. Science, 1996, 273 (5274): 483--487.
[8] Andrews R, Jacques D, Rao A M, et al. Chemical Physics Letters, 1999, 303 (5-6): 467--474.
[9] Vander Wal R L, Ticich T M, Curtis V E. Journal of Physical Chemistry A, 2000, 104 (31): 7209--7217.
[10] Vander Wal R L, Ticich T M. Journal of Physical Chemistry B, 2001, 105 (42): 10249--10256.
[11] Okuno H, Issi J P, Charlier J C. Carbon, 2005, 43 (4): 864--866.
[12] Yuan L M, Saito K, Hu W C, et al. Chemical Physics Letters, 2001, 346 (1-2): 23--28.
[13] Nakazawa S, Yokomori T, Mizomoto M. Chemical Physics Letters, 2005, 403 (1-3): 158--162.
[14] Height M J, Howard J B, Tester J W, et al. Carbon, 2004, 42 (11): 2295--2307.
[15] Zhou Q L, Li C Z, Gu F, et al. Journal of Alloys and Compounds, DOI: 10.10161/j.j.allcom. 2007.09.021.
[16] 程继鹏, 张孝彬, 叶瑛. 矿物岩石, 2006, 26 (1): 9--12.
[17] 华金铭, 蔡英灵, 林性贻, 等. 催化学报, 2003, 24 (7): 513--519.
[18] Liu Y L, Pan C X, Wang J B. Journal of Materials Science, 2004, 39 (3): 1091--1094.
[19] Jiang Z W, Song R J, Bi W G, et al. Carbon, 2007, 45 (2): 449--458.
[20] Deck C P, Vecchio K. Carbon, 2006, 44 (2): 267--275.
[21] Sinnott S B, Andrews R, Qian D, et al. Chemical Physics Letters, 1999, 315 (1-2): 25--30.
[22] Chai S P, Zein S H S, Mohamad A R. Carbon, 2007, 45 (7): 1535--1541.
Outlines

/