Research Paper

Suppression of Excited State Absorption in Erbium-doped Bi2O3-GeO2-Ga2O3-Na2O Glasses

  • ZHOU Ya-Xun ,
  • WANG Jun ,
  • DAI Shi-Xun ,
  • XU Tie-Feng ,
  • NIE Qiu-Hua
Expand
  • (1. The Key Laboratory for Optoelectronic Technology & System, Education Ministry of China, Chongqing University, Chongqing 400044, China; 2. College of Information Science and Engineering, Ningbo University, Ningbo 315211, China)

Received date: 2007-08-24

  Revised date: 2007-10-17

  Online published: 2008-07-20

Abstract

The Ce 3+ ions and B2O3 component were introduced into the Er3+-doped Bi2O3-GeO2-Ga2O3-Na2O glasses, respectively. And the suppression of excited state absorption of Er3+ :4I11/2level was investigated under the excitation of 975nm LD. With the introduction of Ce3+ ion or B2O3 component, the energy transfer between Er3+ :4I11/2 and Ce3+:2F5/2 levels or the multi-phonon relaxation rate of Er3+:4I11/24I13/2 increase, respectively, and the excited state absorption is suppressed efficiently owing to the evident decrease of 4I11/2 level fluorescence lifetime. Meanwhile, the results
show that the total quantum efficiency of Er3+:4I13/24I15/2 is enhanced in the case of Ce3+ ion doping, and the fluorescence intensity of 1.55μm radiative transition is improved accordingly while its effective spectral width is almost
unchanged. In the case of B2O3 component introduction, although the 1.55μm fluorescence intensity is somewhat weakened, its effective spectral width is further broadened and the peak wavelength of gain cross-section shifts to longer wavelength region.

Cite this article

ZHOU Ya-Xun , WANG Jun , DAI Shi-Xun , XU Tie-Feng , NIE Qiu-Hua . Suppression of Excited State Absorption in Erbium-doped Bi2O3-GeO2-Ga2O3-Na2O Glasses
[J]. Journal of Inorganic Materials, 2008
, 23(4) : 829 -835 . DOI: 10.3724/SP.J.1077.2008.00829

References

[1] 杨建虎, 戴世勋, 戴能利, 等(YANG Jian-Hu, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (4): 751--758.
[2] Wang X S, Nie Q H, Xu T F, et al. J. Opt. Soc. Am. B, 2007, 24 (4): 972--978.
[3] 杨建虎, 戴世勋, 胡丽丽, 等. 中国激光, 2003, 30 (3): 267--270.
[4] Hocde S, Jiang S, Peng X, et al. Opt. Mater., 2004, 25 (2): 149--156.
[5] Shen S X, Richards B, Jha A. Opt. Express, 2006, 14 (12): 5050--5054.
[6] Nandi P, Jose G. Opt. Commun., 2006, 265: 588--593.
[7] Nagamatsu K, Nagaoka S, Higashihata M, et al. Opt. Mater., 2004, 27 (2): 337--342.
[8] Sun H T, Xu S Q, Dai S X, et al. J. Non-Cryst. Solids, 2005, 351 (3): 288--292.
[9] Choi Y G, Kim K H. J. Appl. Phys., 2000, 88 (7): 3832--3839.
[10] Hwa L G, Chang Y R, Szu S P. J. Non-Cryst. Solids, 1998, 231 (3): 222--226.
[11] Shen X, Nie Q H, Xu T F, et al. Spectrochim. Acta Part A, 2007, 66 (2): 389--393.
[12] Miyakawa T, Dexter D L. Phys. Rev. B, 1970, 1 (7): 2961--2969.
[13] Judd B R. Phys. Rev., 1962, 127 (3): 750--761.
[14] Ofelt G S. J. Chem. Phys., 1962, 37 (3): 511--520.
[15] Xu J, Su L B, Li H J, et al. Opt. Mater., 2007, 29 (8): 932--935.
[16] McCumber D E. Phys. Rev., 1964, 134 (2A): A299--A306.
[17] Cho D H, Choi Y G, Kim K H. ETRI J., 2001, 23 (4): 151--157.
Outlines

/