Research Paper

Effect of Annealing Temperature on the Microstructure and Scintillation Properties of CsI(Tl) Films

  • CHENG Feng ,
  • ZHONG Yu-Rong ,
  • WANG Bao-Yi ,
  • WANG Tian-Min ,
  • WEI Long
Expand
  • 1. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3. School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083; China

Received date: 2007-09-04

  Revised date: 2007-11-02

  Online published: 2008-07-20

Abstract

CsI(Tl) films were prepared by thermal evaporation and annealed at various temperatures. Structure and scintillation properties of the films were examined using X-ray diffraction, scanning electron microscope, X-ray fluorescence spectrometry, positron annihilation lifetime spectroscope and scintillation pulse height spectrometry. Results show that the CsI films are in micro-columnar structure with a preferential (200) orientation. When the sample is annealed at 150℃, Tl+ ions diffuse to the sample surface. Consequently, the amount and size of the vacancy type of defects increase. However, the light yield increases a little after annealed. The samples annealed at 250℃ have a good crystalline state and scintillation properties. As the annealing temperature increases to 400℃, the light output of the samples decreases seriously due to the dramatic change of their microstructure and the decrease of Ti+.

Cite this article

CHENG Feng , ZHONG Yu-Rong , WANG Bao-Yi , WANG Tian-Min , WEI Long . Effect of Annealing Temperature on the Microstructure and Scintillation Properties of CsI(Tl) Films[J]. Journal of Inorganic Materials, 2008 , 23(4) : 749 -752 . DOI: 10.3724/SP.J.1077.2008.00749

References

[1] Nagarkar V V, Gordon J S, Vasile S, et al. IEEE Trans. Nucl. Sci., 1996, 43 (3): 1559-1563.
[2] Nagarkar V V, Gupta T K, Miller S R, et al. IEEE Trans. Nucl. Sci., 1998, 45 (3): 492-496.
[3] Fioretto E, Innocenti F, Viesti G, et al. IEEE Trans. Nucl. Sci., 2000, 47 (4): 1315-1318.
[4] Garibaldia F, Cisbania E, Cusanno F, et al. Nucl. Instrum. Methods A, 2004, 525 (1-2): 263-267.
[5] 孙长春, 李家才, 姚淑德, 等.核电子学与探测技术, 2004, 24 (4): 376-378.
[6] Duan M, Frojdh C, Thungstrom G, et al. IEEE Trans. Nucl. Sci., 1998, 45 (3): 525-527.
[7] Ananenko A, Fedorov A, Mateychenko P, et al. Appl. Surf. Sci., 2004, 236 (1-4): 186-191.
[8] Fedorov A, Lebedinsky A, Zelenskya O. Nucl. Instrum. Methods A, 2006, 564 (1): 328-331.
[9] Jing T, Goodman C A, Drewery J, et al. IEEE Trans. Nucl. Sci., 1994, 41 (4): 903-909.
[10] Fujieda I, Cho G, Drewery J, et al. IEEE Trans. Nucl. Sci., 1991, 38 (2): 255-262.
[11] 张天保, 唐孝威, 张勤建.高能物理与核物理, 1983, 7 (6): 674-680.
[12] 徐向晏, 牛憨笨.计算物理, 2002, 19 (3): 195-202.
[13] Schotanus P, Kamermans R, Dorenbos P. IEEE Trans. Nucl. Sci., 1990, 37 (2): 177-182.
Outlines

/