Research Paper

Surface Wettability and Vapour Stability of Silica Membranes Modified by Sol-Gel Method

  • YANG Jing ,
  • CHEN Jie-Rong ,
  • YU Rong
Expand
  • 1. School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an 710049,China; 2. School of Environment & Chemistry Engineering, Xi’an Polytechnic University, Xi’an 710048, China

Received date: 2007-08-23

  Revised date: 2007-10-18

  Online published: 2008-07-20

Abstract

Silica sols and silica membranes modified by methyltriethoxysilane(MTES) were prepared by acid catalysed co-hydrolysis and condensation reaction of tetraethylorthosilicate(TEOS) and MTES. The influences of hydrophobic group content on the stability of the silica sols and the surface wettability and vapour stability of the silica membranes were investigated. The results show that the stability of silica sols decreases with MTES/TEOS molar ratio increasing. As MTES/TEOS molar ratio increasing, the surface free energy and surface wettability of the silica membranes decrease greatly. It is mainly because the polar force in surface tension decreases which results from the increase of CH3 nonpolar group on the surface of silica particles shown from FTIR analysis. When the silica membranes age in moist condition, the changes of contact angles and water shoulcl be decrease with MTES/TEOS molar ratio increasing. For hydrophobic silica membranes, MTES/TEOS molar ratio should be controlled between 0.8 and 1.0. AFM image shows that the silica membrane on the ceramic support is continuous and the surface is relatively even and smooth.

Cite this article

YANG Jing , CHEN Jie-Rong , YU Rong . Surface Wettability and Vapour Stability of Silica Membranes Modified by Sol-Gel Method[J]. Journal of Inorganic Materials, 2008 , 23(4) : 739 -744 . DOI: 10.3724/SP.J.1077.2008.00739

References

[1] Scherer G W. J. Non-Crystalline Solids, 1997, 215 (2-3): 155-168
[2] Wang X Z, Li W H, Zhu G S, et al. Microporous and Mesoporous Mater., 2004, 71 (1-3): 87-97.
[3] Huang L C, Richman E K, Kirsch B L, et al. Microporous and Mesoporous Mater., 2006, 96 (1-3): 341-349.
[4] Hegde N D, Venkateswara Rao A. Applied Surface Sci., 2006, 253 (3): 1566-1572.
[5] Prakash S S, Jeffrey Brinker C, Hurd A J. J. Non-Crystalline Solids, 1995, 190 (3): 264-275.
[6] Shylesh S, Singh A P. J. Catalysis, 2006, 244 (1): 52-64.
[7] Venkateswara Rao A, Kulkarni M M. Mater. Chem. Phy., 2002, 77 (3): 819-825.
[8] De Vos R M, Maier W F, Verweij H. J. Membr. Sci., 1999, 158 (1-2): 277-288. [9] Standeker S, Novak Z, Knez Z. J. Coll. Interf. Sci., 2007, 310 (2): 362-368.
[10] Castricum H L, Mittelmeijer-Hazeleger M C, Sah A, et al. Microporous and Mesoporous Materials, 2006, 88 (1-3): 63-71.
[11] Venkateswara Rao A, Haranath D. Microporous and Mesoporous Mater., 1999, 30 (2-3): 267-273.
[12] Venkateswara Rao A, Hegde N D, Shewale P M. Applied Surface Sci., 2007, 253 (9): 4137-4141.
[13] 韦 奇, 李建林, 宋春林, 等(WEI Qi, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (2): 417-423.
[14] da Costa J C D, Lu G Q, Rudolph V. Colloids and Surfaces A, 2001, 179 (2-3): 243-251.
[15] Nair B N, Elferink W J, Keizer K, et al. Journal of Colloid and Interface Science, 1996, 178 (2): 565-570.
[16] Liu R, Xu Y, Wu D, et al. J. Non-crystalline Solids, 2004, 343 (1-3): 61-70.
[17] 陈志林. 陶瓷化复合木材复合方法与性能的基础性研究.北京工业大学博士学位论文. 2003.
[18] Fowkes F M. Ind. Eng. Chem., 1964, 56 (2): 40-44.
[19] Owens D K, Wendt R C. J. Appl. Polym. Sci., 1969, 13: 1741-1745.
[20] Zhang Z, Tanigami Y, Terai R, et al. J. Non-crystalline Solids, 1995, 189 (3): 212-217.
Outlines

/