Composite perovskite oxides La1-xSrxCo1-yFeyO3-δ (LSCF) is an optional cathode material for the intermediate temperature solid oxide fuel cells. La0.6Sr0.4Co0.2Fe0.8O3-δ powders were synthesized by a citrate method. The effects of the precursor solution pH value and the calcining temperature on the phase structure of the LSCF powders were investigated by Xray diffraction. Besides, the impacts of the precursor solution pH value and sintering temperature on the morphology and impedance characteristics of the LSCF sintered bodies were studied by SEM, AC impedance analysis, respectively. The alternatecurrent impedances of the LSCF sintered bodies were analysized based on the Voigttype equivalent circuit model.
The results show that the LSCF sintered body has the lowest impedance in the condition that the precursor solution pH is 4, the calcination temperature is 900℃, and the sintering temperature is 1400℃ for 2h, respectively.
SU Dan
,
ZHU Man-Kang
,
HOU Yu-Dong
,
WANG Hao
,
YAN Hui
. Microstructure and Impedance Analysis of La0.6Sr0.4Co0.2Fe0.8O3-δ for Solid Oxide Fuel Cell Cathode[J]. Journal of Inorganic Materials, 2008
, 23(4)
: 719
-724
.
DOI: 10.3724/SP.J.1077.2008.00719
[1] Minh N Q. J. Am. Ceram. Soc., 1993, 76 (5): 563-588.
[2] Bassat J M, Audinot J N, Grenier J C, et al. Proc. of the 4th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, 2000. 725-731.
[3] Teraoka Y, Zhang H K, Yamazoe N, et al. Mater. Res. Bull., 1988, 23 (1): 51-58.
[4] Huijsmans J P P, van Berkel F P F, Christie G M. J. Power Source, 1998, 7 (1): 107-110.
[5] Tsai C Y, Dixon A G, Ma Y H, et al. J. Am. Ceram. Soc., 1998, 81 (6): 1437-1444.
[6] Teraoka Y, Nobunaga T, Okamoto K, et al. Solid State Ionics, 1991, 48 (34): 207-212.
[7] Tai L W, Nasrallah M M, Anderson H U, et al. Solid State Ionics, 1995, 76 (34): 259-272.
[8] Tai L W, Nasrallah M M, Anderson H U, et al. Solid State Ionics, 1995, 76 (34): 273-283.
[9] 谢 刚, 马文会, 陈书荣, 等. 中国稀土学报, 2002, 20 (1): 81-84.
[10] Mai A, Haanappel V A C, Tietz F, et al. Proc. of 8th International Symposium on Solid Oxide Fuel Cells. Paris, France, 2003. 525-532.
[11] Mai A, Haanappel V A C, Uhlenbruck S, et al. Solid State Ionics, 2005, 176 (1516): 1341-1350.
[12] Mineshige A, Izutsu J, Nakamura M, et al. Solid State Ionics, 2005, 176 (1112): 1145-1149.
[13] Armstrong T, Prado F O, Manthiram A. Solid State Ionics, 2001, 140 (12): 89-96.
[14] Li S H, Jin W Q, Xu N P, et al. Solid State Ionics, 1999, 124 (12): 161-170.
[15] Zeng Y, Lin Y S, Swartz S L. J. Membr. Sci., 1998, 150 (1): 87-98.
[16] Lubke S, Wiemhofer H D. Solid State Ionics, 1999, 117 (34): 229 243, 10.
[17] Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116 (9): 3801-3803.
[18] 杨 Yu, 贾殿赠, 葛炜炜, 等. 无机化学学报, 2004, 20 (8): 881-888.
[19] Xu S J, Thomson W J. Chem. Eng. Sci., 1999, 54 (17): 3839-3850.
[20] Chen C H, Bouwmeester H J M, van Doorn R H E, et al. Solid State Ionics, 1997, 98 (12): 713.
[21] Xia Y, Armstrong T, Prado F, et al. Solid State Ionics, 2000, 130 (12): 81-90.
[22] Meng B, Tan X Y, Zhang B Y, et al. Rare metals, 2006, 25 (1): 79-83 .
[23] 张建荣, 高 濂. 无机化学学报, 2004, 20 (7): 801-805.
[24] Wu Z T, Zhou W, Jin W Q, et al. A. I. Ch. E. Journal, 2006, 52 (2): 769-776.