Research Paper

Electrical Properties of Mn-modified CaBi4Ti4O15 Piezoelectrics for High Temperature Application

  • GU Da-Guo ,
  • LI Guo-Rong ,
  • ZHENG Liao-Ying ,
  • ZENG Jiang-Tao ,
  • DING Ai-Li ,
  • YIN Qing-Rui
Expand
  • State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2007-05-28

  Revised date: 2007-06-20

  Online published: 2008-05-20

Abstract

Mn-modified CaBi4Ti4O15 (CBT+x mol% MnCO3) layer-structured piezoelectric ceramics were prepared by the solid state reaction technology. All samples have the same Curie temperature of 780℃, but the dielectric loss at high temperature is remarkably lowered by Mn addition. With increasing content of Mn, the remnant polarization is slightly decreased; the dielectric constant at room temperature decreases from 173 to 162; and the mechanical quality factor increases from 2700 to 4400. The piezoelectric constant d33 is enhanced from 7 to 14.5. The resistivity of 1.0mol% Mn modified sample is found to be 108 Ω·cm at 500℃, 50 times higher than that of pure CBT. The Arrehenius plot of Mn-modified CBT is fitted by 3 straight lines, while that of pure CBT is fitted by 2 straight lines. The results suggest that the Mn modified CBT is a potential material for high temperature sensing application.

Cite this article

GU Da-Guo , LI Guo-Rong , ZHENG Liao-Ying , ZENG Jiang-Tao , DING Ai-Li , YIN Qing-Rui . Electrical Properties of Mn-modified CaBi4Ti4O15 Piezoelectrics for High Temperature Application[J]. Journal of Inorganic Materials, 2008 , 23(3) : 626 -630 . DOI: 10.3724/SP.J.1077.2008.00626

References

[1] Meetham G W. 0J. Mat. Sci., 1991, 26 (4): 853--860.
[2] Megriche A, Lebrun L, Troccaz M. Sens. Actuator A-Phys., 1999, 78 (2--3): 88--91.
[3] Hase T, Noguchi T, Takemura K, et al. Jpn. J. Appl. Phys. Part 1, 1998, 37 (9B): 5198--5202.
[4] Yan H X, Li C G, Zhou J G, et al. Jpn. J. Appl. Phys. Part 1, 2000, 39 (11): 6339--6342.
[5] 曾江涛. 铋层状结构压电陶瓷的掺杂改性及晶粒定向研究. 中国科学院研究生院博士学位论文, 2005.
[6] Ogawa H, Kimura M, Ando A, et al. Jpn. J. Appl. Phys. Part 1, 2001, 40 (9B): 5715--5718.
[7] Takeuchi T, Tani T, Saito Y. Jpn. J. Appl. Phys. Part 1, 1999, 38 (9B): 5553--5556.
[8] Hou Y D, Zhu M K, Gao F, et al. J. Am. Ceram. Soc., 2004, 87 (5): 847--850.
[9] Izaki T, Haneda H, Watanabe A, et al. Jpn. J. Appl. Phys. Part 1, 1992, 31 (9B): 3045--3047.
[10] Nagata H, Takenaka T. J. Euro. Ceram. Soc., 2001, 21 (10--11): 1299--1302.
[11] Park J H, Park J, Park J G, et al. J. Euro. Ceram. Soc., 2001, 21 (10--11): 1383--1386.
[12] Park J H, Park J G, Kim B K, et al. Mater. Res. Bull., 2002, 37 (2): 305--311.
[13] Zhang S J, Eitel R E, Randall C A, et al. Appl. Phys. Lett., 2005, 86 (26): 62904--62904.
[14] Barranco A P, Pinar F C, Martinez P, et al. J. Euro. Ceram. Soc., 2001, 21 (4): 523--529.
[15] Szwagierczak D, Kulawik J. J. Euro. Ceram. Soc., 2005, 25 (9): 1657--1662.
[16] 张丽娜, 李国荣, 赵苏串, 等(Zhang Li-Na, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (6): 1389--1395.
[17] Xu Y, Li Z R, Wang H, et al. Phys. Rev. B, 1989, 40 (17): 11902--11908. [18] Ko J H, Kojima S, Lushnikov S G, et al. J. Appl. Phys., 2002, 92 (3): 1536--1543.
[19] Noguchi Y, Miyayama M. Appl. Phys. Lett., 2001, 78 (13): 1903--1905.
[20] Friessnegg T, Aggarwal S, Ramesh R, et al. Appl. Phys. Lett., 2000, 77 (1): 127--129.
[21] Yu C S, Hsieh H L. J. Euro. Ceram. Soc., 2005, 25 (12): 2425--2427.
[22] Kholkin A L, Brooks K G, Setter N. Appl. Phys. Lett., 1997, 71 (14): 2044--2046.
[23] Ehara S, Muramatsu K, Shimazu M, et al. Jpn. J. Appl. Phys. Part 1, 1981, 20 (5): 877--881.
[24] Norton D P. Mater. Sci. Eng. R-Rep., 2004, 43 (5--6): 139--247.
[25] Chan N H, Sharma R K, Smyth D M. J. Am. Ceram. Soc., 1982, 65 (3): 167--170.
[26] Wang Z Y, Chen T G. Phys. Stat. Sol. A, 1998, 167 (1): R3--R4.
[27] Forbess M J, Seraji S, Wu Y, et al. Appl. Phys. Lett., 2000, 76 (20): 2934--2936.


Outlines

/