Porous calcium silicate (CS) and β-tricalcium phosphate (β-TCP) bioceramics were obtained by sintering polymeric sponges infiltrated with ceramic slurry. They were implanted in rabbit subcutaneous sites and the biological characteristics were investigated. After 1, 2 and 4 weeks implantation, specimens were harvested and analyzed by SPECT, Von Gieson staining, Micro-CT, SEM and EDX. There is no obvious toxic reaction in porous CS ceramics, showing the excellent biocompatibility of CS ceramics. In SPECT scanning, the ROI of CS and β-TCP is (53.95±15.14) and (9.81±3.64), respectively (p<0.01), showing higher vascularization for CS. In Micro-CT analysis, the percentage of residual material volume fraction of CS and β-TCP after 4 weeks implantation is 16.41%±1.96% and 30.72%±0.69% respectively (p<0.01). In semi-quantitative analysis of histological observation, the percentage of residual material in CS is obviously lower than that in β-TCP. These results show that the biodegradation of CS is higher than that of β-TCP. The deposition of the bone-like hydroxyapatite layer after 2 week implantation show good bioactivity of CS in vivo. In conclusion, compared with β-TCP, porous CS bioceramics have superiority in vascularization, ingrowth of new tissue and degradation in early stage. Therefore, porous CS bioceramics may be potential candidates as biocompatible, bioactive and biodegradable scaffolds for hard tissue repair and tissue engineering applications.
XU Song-Feng
,
HU Yun-Yu
,
LIN Kai-Li
,
WANG Zhen
,
WANG Lin
,
CHANG Jiang
,
BAI Feng
,
NI Si-Yu
. In Vivo Study of Porous Calcium Silicate Bioceramic in Extra-osseous Sites[J]. Journal of Inorganic Materials, 2008
, 23(3)
: 611
-616
.
DOI: 10.3724/SP.J.1077.2008.00611
[1] De Aza P N, Luklinska Z B, Anseau M, et al. J. Microsc., 1996, 182 (Pt 1): 24--31.
[2] Tsuru K, Hayakawa S, Ohtsuki C, et al. J. Mater. Sci. Mater. Med., 1998, 9 (8): 479--484.
[3] Liu X, Ding C, Chu P K. Biomaterials, 2004, 25 (10): 1755--1761.
[4] 林开利, 常江, 汪正, 等(LIN Kai-Li, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 692--698.
[5] De Aza P N, Luklinska Z B, Anseau M R, et al. J. Dent., 1999, 27 (2): 107--113.
[6] Sarmento C, Luklinska Z B, Brown L, et al. J. Biomed. Mater. Res. A, 2004, 69 (2): 351--358.
[7] Dufrane D, Delloye C, McKay I J, et al. J. Mater. Sci. Mater. Med., 2003, 14 (1): 33--38.
[8] Ni S, Chang J, Chou L, et al. J. Biomed. Mater. Res. B, 2007, 80 (1): 174--183.
[9] De Aza P N, Luklinska Z B, Martinez A, et al. J. Microsc, 2000, 197 (Pt 1): 60--67.
[10] De Aza P N, Luklinska Z B, Anseau M R, et al. J. Microsc, 2001, 201 (1): 33--43.
[11] Xue W, Liu X, Zheng X, et al. Biomaterials, 2005, 26 (17): 3455--3460.
[12] Giannoudis P V, Dinopoulos H, Tsiridis E. Injury, 2005, 36 (S1): S20--27.
[13] Patel Z S, Mikos A G. J. Biomater. Sci. Polym. Ed, 2004, 15 (6): 701--726.
[14] Smith L. Arch. Surg., 1963, 87: 653--661.
[15] Hulbert S F, Morrison S J, Klawitter J J. J. Biomed. Mater. Res., 1972, 6 (5): 347--374.
[16] Klawitter J J, Bagwell J G, Weinstein A M, et al. J. Biomed. Mater. Res., 1976, 10 (2): 311--323.
[17] Lin K L, Chang J, Zeng Y, et al. Mater. Lett., 2004, 58 (15): 2109--2113.
[18] Lin K L, Chang J, Lu J X, et al. Ceram. Int., 2007, 33 (4): 979--985.
[19] De Aza P N, De Aza A H, Herrera A, et al. J. Am. Ceram. Soc., 2006, 89 (8): 2619--2624.
[20] Dobrucki L W, Sinusas A J. Curr. Opin. Biotechnol., 2007, 18 (1): 90--96.
[21] van Lenthe G H, Hagenmuller H, Bohner M, et al. Biomaterials, 2007, 28 (15): 2479--2490.
[22] Ohsawa K, Neo M, Okamoto T, et al. J. Mater. Sci. Mater. Med., 2004, 15 (8): 859--864.
[23] Hench L L, Polak J M. Science, 2002, 295 (5557): 1014--1017.
[24] Ho S T, Hutmacher D W. Biomaterials, 2006, 27 (8): 1362--1376.