Research Paper

Fabrication of Ultrathin Films of CdTe Quantum Dots by Electrostatic Self-assembly Method

  • LIU Ming-Xian ,
  • SUN Ying ,
  • GAN Li-Hua ,
  • WANG Jing-Hong ,
  • XU Zi-Jie ,
  • CHEN Long-Wu
Expand
  • Department of Chemistry, Tongji University, Shanghai 200092, China

Received date: 2007-07-02

  Revised date: 2007-08-16

  Online published: 2008-05-20

Abstract

Negatively charged and monodisperse CdTe quantum dots (QDs) with average size of about 5nm were synthesized in aqueous solution using 3-mercaptopropionic acid as stabilizing reagent. Through the electrostatic interactions among the negative surface charges on CdTe QDs, the cationic groups of poly(diallyldimethylammonium chloride) (PDDA) and the anionic groups of poly(sodium 4-styrene-sulfonate) (PSS), ultrathin multilayer of CdTe QDs were fabricated on the pretreated quartz substrate by layer-by-layer electrostatic self-assembly method. UV-Vis spectra, photoluminescence spectra, XPS and AFM were used to characterize the ultrathin films. The results show that there is a linear relationship between the adsorption and the layer numbers of the thin films, indicating that the resultant nanofilms have good quality. The ultrathin films are flatly deposited on the quartz surface with some aggregates of CdTe QDs on it.
The stability and quality of the films can be improved by the introduction of polyelectrolyte multilayers of PDDA/PSS/PDDA between two adjacent layers of CdTe QDs on the substrate. The prepared ultrathin films of CdTe QDs show good photoluminescence property.

Cite this article

LIU Ming-Xian , SUN Ying , GAN Li-Hua , WANG Jing-Hong , XU Zi-Jie , CHEN Long-Wu . Fabrication of Ultrathin Films of CdTe Quantum Dots by Electrostatic Self-assembly Method[J]. Journal of Inorganic Materials, 2008 , 23(3) : 557 -561 . DOI: 10.3724/SP.J.1077.2008.00557

References

[1] Klimov V I, Mikhailovsky A A, Xu S, et al. Science, 2000, 290 (5490): 314--317.
[2] Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370 (6488): 354--357.
[3] Coe S, Woo W K, Bawendi M, et al. Nature, 2002, 420 (6917): 800--803.
[4] Bruchez M Jr, Moronne M, Gin P, et al. Science, 1998, 281 (5385): 2013--2016.
[5] Chan W C, Nie S. Science, 1998, 281 (5385): 2016--2018.
[6] Wu X, Liu H, Haley K N, et al. Nature Biotech., 2003, 21 (1): 41--46.
[7] Gur I, Fromer N A, Geier M L, et al. Science, 2005, 310 (5754): 462--465.
[8] Sun J, Gao M, Feldmann J. J. Nanosci. Nanotech., 2001, 1 (2): 133--136.
[9] Gao M, Sun J, Dulkeith E, et al. Langmuir, 2002, 18 (10), 4098--4102.
[10] Clark S L, Hammond P T. Adv. Mater., 1998, 10 (18): 1515--1519.
[11] Sun J, Hao E, Sun Y, et al. Thin Solid Films, 1998, (327-329): 528--531.
[12] Kotov N A, Dekany I, Fendler J H. J. Phys. Chem., 1995, 99 (35): 13065--13069.
[13] Decher G. Science, 1997, 277 (5330): 1232--1237.
[14] Li L, Qian H, Fang N, et al. J. Lumines., 2006, 16 (1-2): 59--66.
[15] Wasserman S R, Tao Y T, Whitesides G M. Langmuir, 1989, 5 (4): 1074--1087.
[16] Demas J N, Crosby G A. J. Phys. Chem., 1971, 75 (8): 991--1024.
[17] Tanaka M, Mochizuki A, Motomura T, et al. Colloid. Surf. A: Physicochem. Eng. Asp., 2001, 193 (1-3): 145--152.
Outlines

/