Research Paper

Effect of H2 Flow Rate on Microstructure and Optical Property of Nanocrystalline SiC Films

  • YU Wei ,
  • DU Jie ,
  • ZHANG Li ,
  • CUI Shuang-Kui ,
  • LU Wan-Bing ,
  • FU Guang-Sheng
Expand
  • College of Physical Science and Technology, Hebei University, Baoding 071002, China

Received date: 2007-06-25

  Revised date: 2007-10-25

  Online published: 2008-05-20

Abstract

Nanocrystalline (nc) SiC thin films were deposited by helicon wave plasma enhanced chemical vapor deposition technique. The effects of H2 flow rate on the microstructure and optical property of the deposited films were investigated. The deposition rate increases firstly and then
decreases with H2 flow rates increasing, while the crystallization degree of the films increases monotonically. At low H2 flow rate, the optical band gap increases initially and then decreases, which is determined by the competition of surface reaction between hydrogen etching and dangling bond terminating. At high H2 flow rate, the relative density of hydrogen bonding existing in the surface of the nano-SiC increases continuously although the total H content in the films reduces. The increase of the nano-SiC grain quantity and the decrease of the grain size make the optical band gap increase further due to the quantum confinement effect.

Cite this article

YU Wei , DU Jie , ZHANG Li , CUI Shuang-Kui , LU Wan-Bing , FU Guang-Sheng . Effect of H2 Flow Rate on Microstructure and Optical Property of Nanocrystalline SiC Films[J]. Journal of Inorganic Materials, 2008 , 23(3) : 540 -544 . DOI: 10.3724/SP.J.1077.2008.00540

References

[1] Zolper J C, Skowronski M. Materials Research Society, 2005, 30: 273--278.
[2] Harris G L. Properties of Silicon Carbide, First Edition. Howard University Washington, USA, EMIS Datareviews Series, 1995.
[3] 郝跃, 彭军, 杨银堂. 碳化硅宽带隙半导体技术, 第一版. 北京:科学出版社, 2002.
[4] Booa J H, Lee S B, Yu K S, et al. Surface and Coatings Technology, 2000, 131: 147--152.
[5] Kerdiles S, Berthelot A, Gourbilleau F, et al. Appl. Phys. Lett., 2000, 76 (17): 2373--2375.
[6] Sasakiand Y, Nishina Y. Phys. Rev. B., 1989, 40 (3): 1762--1772.
[7] 于威, 王保柱, 杨彦斌, 等. 物理学报, 2005, 54: 2394--2398.
[8] Rajagopalan T, Wang X, Lahlouh B, et al. J. Appl. Phys., 2003, 94 (8): 5252--5260.
[9] Kerdiles S, Rizk R, Gourbilleau F, et al. Mater. Sci. Eng. B, 2000, 69 (70): 530--535.
[10] Ambrosone G, Barucca G, Coscia U, et al. Journal of Non-Crystalline Solids, 2004, 338 (340): 163--167.
[11] Sun Yong, Miyasato Tatsuro. Jpn. J. Appl. Phys., 1998, 37 (10): 5485--5489.
[12] Katiyar M, Yang Y H, Abelson J R. J. Appl. Phys., 1995, 78 (3): 1659--1663.
[13] Grill A, Patel V. Appl. Phys. Lett., 1992, 60 (17): 2089--2091.
[14] Kaneko Tsutomu, Nemoto Dai, Horiguchi Atsushi, et al. Journal of Crystal Growth, 2005, 275: 1097--1101.
[15] 韩伟强, 韩高蓉, 聂东林, 等. 真空科学与技术, 1996, 6 (16): 427--432.
[16] Maitinez F L, Prado D A, Matil I, et al. J. Appl. Phys., 1999, 86 (4): 2055--2061.
[17] Orapunt F, Leary S K O. Appl. Phys. Lett., 2004, 84 (4): 523--525.
[18] Wu X L, Fan J Y, Qiu T, et al. Phys. Rev. Lett., 2005, 94 (2): 026102.
[19] Touir H, Zellama K, Morhange J F, et al. Phy. Rev. B, 1999, 59 (15): 10076--10083.
Outlines

/